123 resultados para Desenvolvimento larval
Resumo:
Larval development of the southern sea garfish (Hyporhamphus melanochir) and the river garfish (H. regularis) is described from specimens from South Australian waters. Larvae of H. melanochir and H. regularis have completed notochord flexion at hatching and are characterized by an elongate body with distinct rows of melanophores along the dorsal, lateral, and ventral surfaces; a small to moderate head; a heavily pigmented and long straight gut; a persistent pre-anal finfold; and an extended lower jaw. Fin formation occurs in the following sequence: caudal, dorsal and anal (almost simultaneously), pectoral, and pelvic. Despite the similarities between both species and among hemiramphid larvae in general, H. melanochir larvae are distinguishable from H. regularis by 1) having 58–61 vertebrae (vs. 51–54 for H. regularis); 2) having 12–15 melanophore pairs in longitudinal rows along the dorsal margin between the head and origin of the dorsal fin (vs. 19–22 for H. regularis); and 3) the absence of a large ventral pigment blotch anteriorly on the gut and isthmus (present in H. regularis). Both species can be distinguished from similar larvae of southern Australia (other hemiramphids and a scomberosocid) by differences in meristic counts and pigmentation.
Resumo:
The spotted seatrout (Cynoscion nebulosus) is one of the most sought after recreational fish in Florida Bay, and it spends its entire life history within the bay (Rutherford et al.,1989b). The biology of adult spotted seatrout in Florida Bay is well known (Rutherford et al., 1982, 1989b) as is the distribution and abundance of juveniles within the bay. The habitats and diets of juveniles are well documented (Hettler, 1989; Chester and Thayer, 1990; Thayer et al., 1999; Florida Department of Environmental Protection1). Nevertheless, the spatial and temporal spawning habits of spotted seatrout and the distribution of larvae have only been partially described (Powell et al., 1989; Rutherford et al., 1989a).
Resumo:
This study reports new information about searobin (Prionotus spp.) early life history from samples collected with a Tucker trawl (for planktonic stages) and a beam trawl (for newly settled fish) from the coastal waters of New Jersey. Northern searobin, Prionotus carolinus, were much more numerous than striped searobin, P. evolans, often by an order of magnitude. Larval Prionotus were collected during the period July–October and their densities peaked during September. For both species, notochord flexion was complete at 6–7 mm standard length (SL) and individuals settled at 8–9 mm SL. Flexion occurred as early as 13 days after hatching and settlement occurred as late as 25 days after hatching, according to ages estimated from sagittal microincrements. Both species settled directly in continental shelf habitats without evidence of delayed metamorphosis. Spawning, larval dispersal, or settlement may have occurred within certain estuaries, particularly for P. evolans; thus collections from shelf areas alone do not permit estimates of total larval production or settlement rates. Reproductive seasonality of P. carolinus and P. evolans may vary with respect to latitude and coastal depth. In this study, hatching dates and sizes of age-0 P. carolinus varied with respect to depth or distance from the New Jersey shore. Older and larger age-0 individuals were found in deeper waters. These variations in searobin age and size appear to be the combined result of intraspecific variations in searobin reproductive seasonality and the limited capability of searobin eggs and larvae to disperse.
Resumo:
Age, size, abundance, and birthdate distributions were compared for larval Atlantic menhaden (Brevoortia tyrannus) collected weekly during their estuarine recruitment seasons in 1989–90, 1990–91, and 1992–93 in lower estuaries near Beaufort, North Carolina, and Tuckerton, New Jersey, to determine the source of these larvae. Larval recruitment in New Jersey extended for 9 months beginning in October but was discontinuous and was punctuated by periods of no catch that were associated with low water temperatures. In North Carolina, recruitment was continuous for 5–6 months beginning in November. Total yearly larval density in North Carolina was higher (15–39×) than in New Jersey for each of the 3 years. Larvae collected in North Carolina generally grew faster than larvae collected in New Jersey and were, on average, older and larger. Birthdate distributions (back-calculated from sagittal otolith ages) overlapped between sites and included many larvae that were spawned in winter. Early spawned (through October) larvae caught in the New Jersey estuary were probably spawned off New Jersey. Larvae spawned later (November–April) and collected in the same estuary were probably from south of Cape Hatteras because only there are winter water temperatures warm enough (≥16°C) to allow spawning and larval development. The percentage contribution of these late-spawned larvae from south of Cape Hatteras were an important, but variable fraction (10% in 1992–93 to 87% in 1989–90) of the total number of larvae recruited to this New Jersey estuary. Thus, this study provides evidence that some B. tyrannus spawned south of Cape Hatteras may reach New Jersey estuarine nurseries.
Resumo:
Spawning behavior and external features of the larval development were studied in the chitons Mopalia muscosa and M. lignosa during the months of April-June, 1974, at Pacific Grove, California. ... The sequence of events in the development of the two species in the same, though some differences in timing exist.
Resumo:
The small-scale fishery is a traditional activity and enrolled in social and cultural practices of the coastal communities and some places of the inland waters of Mozambique. Scope for development, major constraints in the small-scale fisheries and best practices are examined.
Resumo:
In this study the author provided a synthesis of the most relevant aspects of fisheries in Mozambique and Indo-Pacific Region, discussed at the “Seminario sobre avaliaçāo de mananciais de atum na regiāo indo-pacifiqa-jacarta” held in Jakarta from 20 to 22 August 1984. Tens of documents belonging to the Department of Documentation and Information of the Fisheries Research Institute of Maputo and containing valuable information on the tuna fishing in Indo-Pacífic Region were studied in preparation of this seminar.
Resumo:
FAO regularly releases studies on the state of fish resources exploitation (The state of world fisheries and aquaculture)and the development of fisheries by geographic areas. The 1983 and 1985 editions provided interesting discussions on fisheries development trends in the world: the majority of sea-facing countries adopted legislation that extends the national jurisdiction on the waters off their coasts (usually indicated within 200 miles) and establishes exclusive economic zones (EEZs). The huge fluctuations in the abundance of some fish stocks are obstacles to fisheries development. This issue, as well as the need to improve research activities and management of fish stocks is also analyzed in this work. The author highlighted the situation of fisheries in the Western Indian Ocean, with particular attention to tuna fisheries and to inland water resources of Mozambique.
Resumo:
Heteropneustes fossilis was induced bred for the first time in the agro-climatic conditions of Maharashtra, India. The embryonic development was completed within 16-18h after fertilisation. Head and tail ends were distinguishable after 3h and 11-12 somites were visible after 6-7h. The eggs started hatching after 14h of incubation. Average hatching time was 16-18h at 26 degrees C. In first day old pro-larva, notochord was deflected upwards, eyes were darkly pigmented and alimentary canal appeared. In fourth day old post-larva intestinal coiling could be seen and yolk was absorbed. Aerial respiration started by 8th day. The 10 day old post-larva was free swimming and fed voraciously attaining a length of 20 mm in 30 days.
Resumo:
Larvae of Macrobrachium rosenbergii were successfully reared in artificial sea water prepared in fresh ground water. The water was circulated through a biological filter by means of air-lift pumps for a period of one week to remove the undissolved particles prior to use in the hatchery operation. The experiments were initiated during 1989 and the hatchery has been working on pilot scale since June, 1990. The larvae in all the experiments were fed with egg-custard, Mona and Artemia nauplii. The survival rate varied from 5 to 52% in the 12 experiments. These findings can add to the development of hatcheries in the inland areas which can further boost the popularization of giant freshwater prawn farming.
Resumo:
The early embryonic and larval stages of Opisthopterus tardoore are described and discussed. The developing 3 eggs of stages up to 21hrs after collection and larvae up to 118hrs after hatching were reared in the laboratory. Seasonal occurrence of the eggs in the Vellar estuary, Porto Novo (lat. 11 29'N; 79 degree 46'E) was recorded for a period of 2 years (Nov. 1977 to Oct. 1979). Variation in myotomic counts in the larvae is critically reviewed with earlier works.
Resumo:
Reproduction of Hydatina physis was studied in a population from Karachi, Pakistan, including mating and egg laying behavior, spawn characteristics and development.Individuals first appear in the field in October and remain until March. The spawning occurs from mid-November till mid-February with a peak in December. During this period the individuals were also observed pairing. In captivity, mating lasts for 30 minutes, second mating occurs two days later. Oviposition occurs in a very interesting and unusual manner. The mother turns "up-side-down" with its food fully expanded and the shell completely hidden underneath, the expanded foot serves as protective cover to the eggs. Eggs are deposited in a complexly folded mass with a short stem and an adhesive disc. Capsules, arranged in a single layer, contain 4-6 eggs each of wich is 70 um in diameter. Development is planktotrophic and veligers hatch after 14 days at a temperature of 26-28 degrees Celsius.