90 resultados para Agricultural pollution
Resumo:
This study looked at improving knowledge base capacity and enhance capacity to address marine pollution and water quality monitoring issues in Myanmar. Significant capacity needs were identified and a follow up plan presented.
Resumo:
The aim of the seawater irrigation system (SIS) is to clean up shrimp pond effluent and provide high quality seawater for shrimp farming. The system has 3 components: water intake; treatment reservoir and discharge system. There are criteria for site selection because shrimp farmers are required to form associations so they can work closely together. The construction site must be on the coastal area outside a mangrove forest and located away from a production agricultural area. All construction sites must have undergone an environmental impact assessment, and should be located on the area listed in Thailand's Coastal Zone Management Plan. Five SIS projects, which cover a culture area of 6,500 ha with 1,300 farmers (families), were completed and operated. The Department of Fisheries has planned for another 28 projects, that will cover almost 44,000 ha of culture area.
Resumo:
A clean and healthy environment is paramount to human existence. While pesticide use has successfully sustained agricultural and food production in our lifetime as well as safeguarded human health by controlling insect pests, it has also caused many tragedies including population declines in our wildlife, fatalities in workers exposed to pesticides in its manufacture and use, and the increasing incidence of dreaded human illnesses such as cancer. A delicate balance should be achieved to mitigate the adverse impact of pesticide use to the environment and at the same time ensuring short- and long-term agricultural productivity. Endosulfan has been effectively used as a pesticide, but much evidence on its chronic and sub-lethal effects on humans and wildlife have been gathered in recent years. More research still needs to be done to determine its effects from long-term exposure at very low levels. Endosulfan is highly toxic to fish and other aquatic animals and, thus, not recommended for use in aquatic ecosystems. However, in some countries, it has been incorrectly used as a molluscicide in rice paddies, which could have an adverse impact on the rice-fish farming systems and on other surrounding aquatic ecosystems. It is clear that such practices should be stopped and users must strictly observe the recommended application methods. Agricultural productivity should be achieved with less pesticide by using integrated pest management programs which make use of biological, cultural, and physical control agents and lower doses of safer pesticide on a need only basis. The benefits of biotechnology should also be used to develop more effective and safer products and techniques. This is a valid approach and one that will require a unified and concerted effort among suppliers and users of pesticides in order to ensure that resources are used to our best advantage with minimal risk.
Resumo:
This paper presents data and findings from focus group discussions in study communities selected by the CGIAR Research Program on Aquatic Agricultural Systems (AAS) in the Western Province of Zambia. The discussions focused on cultivated crops and vegetables collected from open fields and consumed as food. Participatory tools for agricultural biodiversity (agrobiodiversity) assessment were used to capture community perspectives on plant species and varietal diversity; factors influencing the availability and use of plants for food; unique, common and rare crop species cultivated in a community, identified through a four-cell analysis methodology; and core problems, root causes, effects and necessary actions to tackle them, using problem tree or situation analysis methods.
Resumo:
This working paper aims to synthesize and share learning from the experience of adapting and operationalizing the Research in Development(RinD) approach to agricultural research in the five hubs under the The CGIAR Research Program on Aquatic Agricultural Systems. It seeks to share learning about how the approach is working in context and to explore the outcomes it is achieving through initial implementation over 3 ½ years. This learning can inform continuation of agricultural research in the second phase of the CGIAR research programs and will be useful to others aiming to implement research programs that seek to equitably build capacity to innovate in complex social-ecological systems. Each of the chapters in this working paper have shown that RinD has produced a range of outcomes that were often unexpected and broader in scope than might result from other approaches to agricultural research. RinD also produces innovations, and there is evidence that it builds capacity to innovate.
Resumo:
Fresh water and fish are important to the people who live in the Lake Victoria region therefore the quality of the water and fish is of major importance (Johnson & Odada, 1996). It is well known that dirty water and spoilt fish can lead to poor health and lower standards of living, and that quality can be affected by the pollution in the environment. Even though Lake Victoria is very large, it is relatively shallow and the water remains in the lake basin for a long time (Bootsma & Hecky, 1993). There are a number of environmental issues in Lake Victoria, including water hyacinth~over-population and increased farming causing problems with the lake ecosystem. All these factors combine to keep contaminants within the lake for long time, which will lead to gradually increasing concentrations in the lake. Pollution is a term that covers a wide variety of chemicals and physical changes and their adverse effects on the environment. Here we focus on contaminants, which are unwanted chemicals introduced to the environment. Contaminants include a very wide variety of chemicals, both man-made and natural, for example, mercury, pesticides and herbicides, heavy metals, and natural plant and algae toxins. Many contaminants do not always lead to adverse effects immediately, but can gradually induce long-term problems leading to chronic illnesses and physical damage. A few contaminants have very rapid impacts resulting in immediately obvious changes such as death or injury. Sources of contaminants are varied. Contaminants can get in the lake by the way of agricultural treatment of crops near the lake, industrial effluent, intentional introduction such as fish poisoning byfishermen, natural sources such as heavy metals from particular types of rocks, and even some plants naturally release their toxins. Contaminant sources are not always found near Lake Victoria.
Resumo:
Growing of fish in cages is currently practiced in Uganda and was first introduced in northern Lake Victoria in 2010. An environment monitoring study was undertaken at Source of the Nile, a private cage fish farm, in Napoleon gulf, northern Lake Victoria. In-situ measurements of key environmental (temperature, dissolved oxygen, pH and conductivity) and biological (algae, zooplankton, macro-benthos) variables were made at three transects: Transect 1- the site with fish cages (WC); transect 2- upstream of the fish cages (USC-control) and Transect 3- downstream of the cages (DSC). Upstream and Downstream sites were located approximately 1.0 km from the fish cages. Environment parameters varied spatially and temporally but were generally within safe ranges for freshwater habitats. Higher concentrations of SRP (0.015-0.112 Mg/L) occurred at USC during February, September and at DSC in November; NO2-N (0.217- 0.042 mg/L) at USC and DSC in February and November; NH4-N (0.0054- 0.065 Mg/L) at WC and DSC in February, May and November. Algal bio-volumes were significantly higher at WC (F (2,780)=4.619; P=0.010). Zooplankton species numbers were consistently lower at WC with a significant difference compared to the control site (P=0.032). Macro-benthos abundance was consistently higher at the site with cages where mollusks and low-oxygen and pollution-tolerant chironomids were the dominant group. Higher algal biomass, concentration of low-oxygen/pollution-tolerant macro-benthos and depressed zooplankton diversity at WC suggested impacts from the fish cages on aquatic biota.
Resumo:
Of all the great lakes, Lake Victoria has the highest population concentration on its fringes. This has resulted into serious human impacts on the ecosystem through intense agricultural activities (cultivation, livestock and over fishing), sporadic settlements, urbanization and industrial establishments. The consequences have been loss of animals and plant life, deforestation and general land degradation, pollution, loss of water quality and clean air. Aquatic life has become endangered and less guaranteeing to continued fish production. Awareness workshops and general talks have been done to a few selected communities by the lakes landing sites and in the catchment area to mitigate the deteriorating environmental conditions. Naturally the situation calls for reversal to the increasing stress of the ecosystem. As a result, every water body surveyed put forward some mitigation suggestions
Resumo:
The annual report presents research programs carried out by the institute during the reporting period. FIRRI has the mandate is to promote, undertake and coordinate all aspects of research in fisheries, fish production systems and the water environment, aquaculture and socio-economics while conserving the natural resource.
Resumo:
The annual report present activities carried out by the different organizations that make up the East African Agricultural & Fisheries Research Council which covers reports from the following Organisations: I. Report of the East African Agriculture and Forestry Research Organization 2. Report of the East African Fishery Research Organization 3. Report of the East African Marine Fisheries Research Organization 4. Report of the East African Trypanosomiasis Research Organization 5. Report of the East African Veterinary Research Organization The activities reported are for the period 1958
Resumo:
The annual report present activities carried out by the different organizations that make up the East African Agricultural & Fisheries Research Council which included: 1. Report of the East African Agriculture & Forestry Research Organization 2. Report of the East African Veterinary Research Organization 3. Report of the East African Fishery Research Organization 4. Report of the East African Marine Fisheries Research Organization The activities reported are for the period 1954-55.
Resumo:
The annual report present activities carried out by the different organizations that make up the East African Agricultural & Fisheries Research Council which included: 1. Report of the East African Agriculture & Forestry Research Organization 2. Report of the East African Veterinary Research Organization 3. Report of the East African Fishery Research Organization 4. Report of the East African Marine Fisheries Research Organization and 5. Report of the East African Trypanosomiasis Research Organisation. The activities reported are for the period 1955-56.
Resumo:
The annual report present activities carried out by the different organizations that make up the East African Agricultural & Fisheries Research Council which covers reports from the following Organisations: I. Report of the East African Agriculture and Forestry Research Organization 2. Report of the East African Fishery Research Organization 3. Report of the East African Marine Fisheries Research Organization 4. Report of the East African Trypanosomiasis Research Organization and 5. Report of the East African Veterinary Research Organization The activities reported are for the period 1956-57
Resumo:
The CGIAR Research Program on Aquatic Agricultural Systems (AAS) is collaborating with partners to develop and implement a foresight-based engagement with diverse stakeholders linked to aquatic agricultural systems. The program’s aim is to understand the implications of current drivers of change for fish agri-food systems, and consequently food and nutrition security, in Africa, Asia and the Pacific. Partners include the Global Forum on Agricultural Research (GFAR), the Forum for Agricultural Research in Africa (FARA) and the African Union’s New Partnership for Africa’s Development (AU-NEPAD). A key part of the program was a participatory scenario-building workshop held in July 2015 under the theme of "futures of aquatic agricultural systems and implications for fish agri-food systems in southern Africa." The objectives for the workshop were (i) to engage local stakeholders in exploring plausible futures of aquatic agricultural systems, and (ii) to broker and catalyze collaborative plans of action based on the foresight analysis. This report presents technical findings from the workshop. The CGIAR Research Program on Aquatic Agricultural Systems (AAS) is collaborating with partners to develop and implement a foresight-based engagement with diverse stakeholders linked to aquatic agricultural systems. The program’s aim is to understand the implications of current drivers of change for fish agri-food systems, and consequently food and nutrition security, in Africa, Asia and the Pacific. Partners include the Global Forum on Agricultural Research (GFAR), the Forum for Agricultural Research in Africa (FARA) and the African Union’s New Partnership for Africa’s Development (AU-NEPAD). A key part of the program was a participatory scenario-building workshop held in July 2015 under the theme of "futures of aquatic agricultural systems and implications for fish agri-food systems in southern Africa." The objectives for the workshop were (i) to engage local stakeholders in exploring plausible futures of aquatic agricultural systems, and (ii) to broker and catalyze collaborative plans of action based on the foresight analysis. This report presents technical findings from the workshop.