162 resultados para Age, hypothetical age at size zero
Resumo:
The work discussed in this report deals with aspects of the ecology of Arctic charr (Salvelinus alpinus, L.). The main aims of the study were: (1) To assess the relative abundance of migrants entering the River Liza and Smithy Beck in the English Lake District). (2) To assess the degree of stream specificity. (3) To determine the period of residency in the streams. (4) To obtain a better understanding of migratory behaviour. (5) To determine the growth rate of mature fish. (6) To determine the morphometric and meristic attributes. In conjunction with this work a study was carried out to investigate the feasibility of using a video recording system to monitor the migration of charr in Smithy Beck.
Resumo:
The hypothesis that heavy fishing pressure has led to changes in the biological characteristics of the estuary cobbler (Cnidoglanis macrocephalus) was tested in a large seasonally open estuary in southwestern Australia, where this species completes its life cycle and is the most valuable commercial fish species. Comparisons were made between seasonal data collected for this plotosid (eeltail catfish) in Wilson Inlet during 2005–08 and those recorded with the same fishery-independent sampling regime during 1987–89. These comparisons show that the proportions of larger and older individuals and the catch rates in the more recent period were far lower, i.e., they constituted reductions of 40% for fish ≥430 mm total length, 62% for fish ≥4 years of age, and 80% for catch rate. In addition, total mortality and fishing-induced mortality estimates increased by factors of ~2 and 2.5, respectively. The indications that the abundance and proportion of older C. macrocephalus declined between the two periods are consistent with the perception of long-term commercial fishermen and their shift toward using a smaller maximum gill net mesh to target this species. The sustained heavy fishing pressure on C. macrocephalus between 1987–89 and 2005–08 was accompanied by a marked reduction in length and age at maturity of this species. The shift in probabilistic maturation reaction norms toward smaller fish in 2005–08 and the lack of a conspicuous change in growth between the two periods indicate that the maturity changes were related to fishery-induced evolution rather than to compensatory responses to reduced fish densities.
Resumo:
Fish growth is commonly estimated from length-at-age data obtained from otoliths. There are several techniques for estimating length-at-age from otoliths including 1) direct observed counts of annual increments; 2) age adjustment based on a categorization of otolith margins; 3) age adjustment based on known periods of spawning and annuli formation; 4) back-calculation to all annuli, and 5) back-calculation to the last annulus only. In this study we compared growth estimates (von Bertalanffy growth functions) obtained from the above five methods for estimating length-at-age from otoliths for two large scombrids: narrow-barred Spanish mackerel (Scomberomorus commerson) and broad-barred king mackerel (Scomberomorus semifasciatus). Likelihood ratio tests revealed that the largest differences in growth occurred between the back-calculation methods and the observed and adjusted methods for both species of mackerel. The pattern, however, was more pronounced for S. commerson than for S. semifasciatus, because of the pronounced effect of gear selectivity demonstrated for S. commerson. We propose a method of substituting length-at-age data from observed or adjusted methods with back-calculated length-at-age data to provide more appropriate estimates of population growth than those obtained with the individual methods alone, particularly when faster growing young fish are disproportionately selected for. Substitution of observed or adjusted length-at-age data with back-calculated length-at-age data provided more realistic estimates of length for younger ages than observed or adjusted methods as well as more realistic estimates of mean maximum length than those derived from backcalculation methods alone.
Resumo:
Ten growth models were fitted to age and growth data for spiny dogfish (Squalus acanthias) in the Gulf of Alaska. Previous studies of spiny dogfish growth have all fitted the t0 formulation of the von Bertalanffy model without examination of alternative models. Among the alternatives, we present a new two-phase von Bertalanffy growth model formulation with a logistically scaled k parameter and which estimates L0. A total of 1602 dogfish were aged from opportunistic collections with longline, rod and reel, set net, and trawling gear in the eastern and central Gulf of Alaska between 2004 and 2007. Ages were estimated from the median band count of three independent readings of the second dorsal spine plus the estimated number of worn bands for worn spines. Owing to a lack of small dogfish in the samples, lengths at age of small individuals were back-calculated from a subsample of 153 dogfish with unworn spines. The von Bertalanffy, two-parameter von Bertalanffy, two-phase von Bertalanffy, Gompertz, two-parameter Gompertz, and logistic models were fitted to length-at-age data for each sex separately, both with and without back-calculated lengths at age. The two-phase von Bertalanffy growth model produced the statistically best fit for both sexes of Gulf of Alaska spiny dogfish, resulting in L∞ = 87.2 and 102.5 cm and k= 0.106 and 0.058 for males and females, respectively.
Resumo:
Body-size measurement errors are usually ignored in stock assessments, but may be important when body-size data (e.g., from visual sur veys) are imprecise. We used experiments and models to quantify measurement errors and their effects on assessment models for sea scallops (Placopecten magellanicus). Errors in size data obscured modes from strong year classes and increased frequency and size of the largest and smallest sizes, potentially biasing growth, mortality, and biomass estimates. Modeling techniques for errors in age data proved useful for errors in size data. In terms of a goodness of model fit to the assessment data, it was more important to accommodate variance than bias. Models that accommodated size errors fitted size data substantially better. We recommend experimental quantification of errors along with a modeling approach that accommodates measurement errors because a direct algebraic approach was not robust and because error parameters were diff icult to estimate in our assessment model. The importance of measurement errors depends on many factors and should be evaluated on a case by case basis.
Resumo:
Daily and seasonal activity rhythms, swimming speed, and modes of swimming were studied in a school of spring-spawned age-0 bluefish (Pomatomus saltatrix) for nine months in a 121-kL research aquarium. Temperature was lowered from 20° to 15°C, then returned to 20°C to match the seasonal cycle. The fish grew from a mean 198 mm to 320 mm (n= 67). Bluefish swam faster and in a more organized school during day (overall mean 47 cm/s) than at night (31 cm/s). Swimming speed declined in fall as temperature declined and accelerated in spring in response to change in photoperiod. Besides powered swimming, bluefish used a gliding-upswimming mode, which has not been previously described for this species. To glide, a bluefish rolled onto its side, ceased body and tail beating, and coasted diagonally downward. Bluefish glided in all months of the study, usually in the dark, and most intensely in winter. Energy savings while the fish is gliding and upswimming may be as much as 20% of the energy used in powered swimming. Additional savings accrue from increased lift due to the hydrofoil created by the horizontal body orientation and slightly concave shape. Energy-saving swimming would be advantageous during migration and overwintering.
Resumo:
We used bomb radiocarbon (14C) in this age validation study of Dover sole (Microstomus pacificus). The otoliths of Dover sole, a commercially important fish in the North Pacific, are difficult to age and ages derived from the current break-andburn method were not previously validated. The otoliths used in this study were chosen on the basis of estimated birth year and for the ease of interpreting growth zone patterns. Otolith cores, material representing years 0 through 3, were isolated and analyzed for 14C. Additionally, a small number of otoliths with difficult-to-interpret growth patterns were analyzed for 14C to help determine age interpretation. The measured Dover sole 14C values in easier-to-interpret otoliths were compared with a 14C reference chronology for Pacific halibut (Hippoglossus stenolepis) in the North Pacific. We used an objective statistical analysis where sums of squared residuals between otolith 14C values of Dover sole and the reference chronology were examined. Our statistical analysis also included a procedure where the Dover sole 14C values were standardized to the reference chronology. These procedures allowed an evaluation of aging error. The 14C results indicated that the Dover sole age estimates from the easier-to-interpret otoliths with the break-and-burn method are accurate. This study validated Dover sole ages from 8 to 47 years.
Resumo:
Over 34,000 age 0–2 juvenile sablefish (Anoplopoma fimbria) were tagged and released in southeast Alaska waters during 1985–2005. The data set resulting from this tagging study was unusual because of its time span (20 years) and because age could be reliably inferred from release length (i.e., tagged and released fish were of known age); thus, age-specific movement patterns could be examined. The depth- and area-related recovery patterns supported the concepts that sablefish move to deeper water with age and migrate counterclockwise in the Gulf of Alaska. Availability to the fishery increased rapidly for fish of younger ages, peaked at age 5 to 6, and then gradually declined as sablefish moved deeper with age. Decreased availability with age may occur because of lower fishing effort in deep water and could have substantial implications for sablef ish stock assessments because “domeshaped” availability influences the reliability of abundance estimates. The area-related recovery pattern was not affected by year-class strength; i.e., there was no significant densitydependent relationship.
Resumo:
Arrowtooth flounder (Atheresthes stomias) has had the highest abundance of any groundfish species in the Gulf of Alaska since the 1970s (Matarese et al., 2003; Turnock et al., 2005; Blood et al., 2007); however, commercial catches have been restricted because Pacific halibut (Hippoglossus stenolepis) are caught as bycatch in the fishery. Arrowtooth flounder plays a key role in the ecosystem because it is a dominant organism within the food web, both as an apex predator of fish and invertebrates, as well as an important prey for walleye pollock (Theragra chalcogramma; Aydin et al., 2002). Walleye pollock is the dominant groundfish in the Bering Sea, a principal groundfish in the Gulf of Alaska, and the primary prey for marine mammals. The distribution of arrowtooth flounder extends from Cape Navarin and the eastern Sea of Okhotsk in Russia, across the Bering Sea, Aleutian Islands, Gulf of Alaska, and south to the coast of central California (Shuntov, 1964; Britt and Martin, 2001; Chetvergov, 2001; Weinberg et al., 2002; Zenger, 2004). Because of the importance of arrowtooth flounder in the marine ecosystem of A laska, a maturity study of this species was undertaken to determine age-at-maturity, which is essential for age-based stock management models. Before these results, management has had to rely upon a length-at-maturity-based estimate (Zimmermann, 1997) to manage stocks in the Gulf of Alaska (GOA), Bering Sea, and Aleutian Islands. The central GOA was selected as the location for this maturity study Age- and length-at-maturity of female arrowtooth flounder (Atheresthes stomias) in the Gulf of Alaska because it contains approximately 70% of the total Gulf of Alaska arrowtooth flounder biomass (1.9×106 t, age 3 and older)— the highest percentage in the world (Shuntov, 1964; Britt and Martin, 2001; Weinberg et al., 2002; Wilderbuer and Nichol, 2006).
Resumo:
Tagging experiments are a useful tool in fisheries for estimating mortality rates and abundance of fish. Unfortunately, nonreporting of recovered tags is a common problem in commercial fisheries which, if unaccounted for, can render these estimates meaningless. Observers are often employed to monitor a portion of the catches as a means of estimating reporting rates. In our study, observer data were incorporated into an integrated model for multiyear tagging and catch data to provide joint estimates of mortality rates (natural and f ishing), abundance, and reporting rates. Simulations were used to explore model performance under a range of scenarios (e.g., different parameter values, parameter constraints, and numbers of release and recapture years). Overall, results indicated that all parameters can be estimated with reasonable accuracy, but that fishing mortality, reporting rates, and abundance can be estimated with much higher precision than natural mortality. An example of how the model can be applied to provide guidance on experimental design for a large-scale tagging study is presented. Such guidance can contribute to the successful and cost-effective management of tagging programs for commercial fisheries.
Resumo:
Because of a lack of fishery-dependent data, assessment of the recovery of fish stocks that undergo the most aggressive form of management, namely harvest moratoriums, remains a challenge. Large schools of red drum (Sciaenops ocellatus) were common along the northern Gulf of Mexico until the late 1980s when increased fishing effort quickly depleted the stock. After 24 years of harvest moratorium on red drum in federal waters, the stock is in need of reassessment; however, fisherydependent data are not available in federal waters and fishery-independent data are limited. We document the distribution, age composition, growth, and condition of red drum in coastal waters of the north central Gulf of Mexico, using data collected from a nearshore, randomized, bottom longline survey. Age composition of the fishery-independent catch indicates low mortality of fish age 6 and above and confirms the effectiveness of the federal fishing moratorium. Bottom longline surveys may be a cost-effective method for developing fishery-independent indices for red drum provided additional effort can be added to nearshore waters (<20 m depth). As with most stocks under harvest bans, effective monitoring of the recovery of red drum will require the development of fishery-independent indices. With limited economic incentive to evaluate non-exploited stocks, the most cost-effective approach to developing such monitoring is expansion of existing fishery independent surveys. We examine this possibility for red drum in the Gulf of Mexico and recommend the bottom longline survey conducted by the National Marine Fisheries Service expand effort in nearshore areas to allow for the development of long-term abundance indices for red drum.
Resumo:
Age-based analyses were used to demonstrate consistent differences in growth between populations of Acanthochromis polyacanthus (Pomacentridae) collected at three distance strata across the continental shelf (inner, mid-, and outer shelf) of the central Great Barrier Reef (three reefs per distance stratum). Fish had significantly greater maximum lengths with increasing distance from shore, but fish from all distances reached approximately the same maximum age, indicating that growth is more rapid for fish found on outer-shelf reefs. Only one fish collected from inner-shelf reefs reached >100 mm SL, whereas 38−67% of fish collected from the outer shelf were >100 mm SL. The largest age class of adult-size fish collected from inner and mid-shelf locations comprised 3−4 year-olds, but shifted to 2-year-olds on outer-shelf reefs. Mortality schedules (Z and S) were similar irrespective of shelf position (inner shelf: 0.51 and 60.0%; mid-shelf: 0.48 and 61.8%; outer shelf: 0.43 and 65.1%, respectively). Age validation of captive fish indicated that growth increments are deposited annually, between the end of winter and early spring. The observed cross-shelf patterns in adult sizes and growth were unlikely to be a result of genetic differences between sample populations because all fish collected showed the same color pattern. It is likely that cross-shelf variation in quality and quantity of food, as well as in turbidity, are factors that contribute to the observed patterns of growth. Similar patterns of cross-shelf mortality indicate that predation rates varied little across the shelf. Our study cautions against pooling demographic parameters on broad spatial scales without consideration of the potential for cross-shelf variabil
Resumo:
The growth parameters of Otolithes ruber (Sciaenidae) were determined from both length-frequency and length-at-age data collected from Kuwait waters from 1984 to 1986. The similarity of the growth parameters is reflected in the small range of the parameters o' (=log sub(10)K+2logL) which indicates the compatibility of the two methods for this relatively short-lived species.
Resumo:
Eye lens diameter was analyzed in two sparid fish species, Lithognathus mormyrus and Diplodus vulgaris, in order to determine the possibility of using these data for age determination. The results showed that the technique could be adopted for determining the age of the two species when the specimens are very young. The method is especially useful for age determination when otolith or scale rings are not visible or when false rings may give erroneous readings.
Resumo:
The sagittal otoliths of bluespot jobfish (Pristipomoides flamentosus) from the Mahe Plateau, Seychelles, were examined for growth rings using light microscopy. Banding with putative annual and monthly frequency were observed. Consistent age estimates were derived from each of the two patterns. The resulting length-at-age data were use t estimate the parameters K and t sub(0), viz: K=0.33, t sub(0) = 0.16 for males and K = 0.36, t sub(0) = 0.06 for females (using von Bertalanffy plots). Possible causes of the banding are discussed.