867 resultados para 070403 Fisheries Management


Relevância:

80.00% 80.00%

Publicador:

Resumo:

NOAA’s National Centers for Coastal Ocean Science Biogeography Branch has mapped and characterized large portions of the coral reef ecosystems inside the U.S. coastal and territorial waters, including the U.S. Caribbean. The complementary protocols used in these efforts have enabled scientists and managers to quantitatively and qualitatively compare marine ecosystems in tropical U.S. waters. The Biogeography Branch used similar protocols to generate new benthic habitat maps for Fish Bay, Coral Bay and the St. Thomas East End Reserve (STEER). While this mapping effort marks the third time that some of these shallow-water habitats (≤40 m) have been mapped, it is the first time that nearly 100% of the seafloor has been characterized in each of these areas. It is also the first time that high resolution imagery describing seafloor depth has been collected in each of these areas. Consequently, these datasets provide new information describing the distribution of coral reef ecosystems and serve as a spatial baseline for monitoring change in the Fish Bay, Coral Bay and the STEER. Benthic habitat maps were developed for approximately 64.3 square kilometers of seafloor in and around Fish Bay, Coral Bay and the STEER. Twenty seven percent (17.5 square kilometers) of these habitat maps describe the seafloor inside the boundaries of the STEER, the Virgin Islands National Park and the Virgin Islands Coral Reef National Monument. The remaining 73% (46.8 square kilometers) describe the seafloor outside of these MPA boundaries. These habitat maps were developed using a combination of semi-automated and manual classification methods. Habitats were interpreted from aerial photographs and LiDAR (Light Detection and Ranging) imagery. In total, 155 distinct combinations of habitat classes describing the geology and biology of the seafloor were identified from the source imagery.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

NOAA’s National Centers for Coastal Ocean Science (NCCOS)-Center for Coastal Monitoring and Assessment’s (CCMA) Biogeography Branch, National Park Service (NPS), US Geological Survey, and the University of Hawaii used acoustic telemetry to quantify spatial patterns and habitat affinities of reef fishes around the island of St. John, US Virgin Islands. The objective of the study was to define the movements of reef fishes among habitats within and between the Virgin Islands Coral Reef National Monument (VICRNM), the Virgin Islands National Park (VIIS), and Territorial waters surrounding St. John. In order to better understand species’ habitat utilization patterns among management regimes, we deployed an array of hydroacoustic receivers and acoustically tagged reef fishes. Thirty six receivers were deployed in shallow near-shore bays and across the shelf to depths of approximately 30 m. One hundred eighty four individual fishes were tagged representing 19 species from 10 different families with VEMCO V9-2L-R64K transmitters. The array provides fish movement information at fine (e.g., day-night and 100s meters within a bay) to broad spatial and temporal scales (multiple years and 1000s meters across the shelf). The long term multi-year tracking project provides direct evidence of connectivity across habitat types in the seascape and among management units. An important finding for management was that a number of individuals moved among management units (VICRNM, VINP, Territorial waters) and several snapper moved from near-shore protected areas to offshore shelf-edge spawning aggregations. However, most individuals spent the majority of their time with VIIS and VICRNM, with only a few wide-ranging species moving outside the management units. Five species of snappers (Lutjanidae) accounted for 31% of all individuals tagged, followed by three species of grunts (Haemulidae) accounting for an additional 23% of the total. No other family had more than a single species represented in the study. Bluestripe grunt (Haemulon sciurus) comprised 22% of all individuals tagged, followed by lane snappers (Lutjanus synagris) at 21%, bar jack (Carangoides ruber) at 11%, and saucereye porgy (Calamus calamus) at 10%. The largest individual tagged was a 70 cm TL nurse shark (Ginglymostoma cirratum), followed by a 65 cm mutton snapper (Lutjanus analis), a 47 cm bar jack, and a 41 cm dog snapper (Lutjanus jocu). The smallest individuals tagged were a 19 cm blue tang (Acanthurus coeruleus) and a 19.2 cm doctorfish (Acanthurus chirurgus). Of the 40 bluestriped grunt acoustically tagged, 73% were detected on the receiver array. The average days at large (DAL) was 249 (just over 8 months), with one individual detected for 930 days (over two and a half years). Lane snapper were the next most abundant species tagged (N = 38) with 89% detected on the array. The average days at large (DAL) was 221 with one individual detected for 351 days. Seventy-one percent of the bar jacks (N = 21) were detected on the array with the average DALs at 47 days. All of the mutton snapper (N = 12) were detected on the array with an average DAL of 273 and the longest at 784. The average maximum distance travelled (MDT) was ca. 2 km with large variations among species. Grunts, snappers, jacks, and porgies showed the greatest movements. Among all individuals across species, there was a positive and significant correlation between size of individuals and MDT and between DAL and MDT.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A study was conducted in June 2009 to assess the current status of ecological condition and potential human-health risks throughout subtidal estuarine waters of the Sapelo Island National Estuarine Research Reserve (SINERR) along the coast of Georgia. Samples were collected for multiple indicators of ecosystem condition, including water quality (dissolved oxygen, salinity, temperature, pH, nutrients and chlorophyll, suspended solids, fecal coliform bacteria and coliphages), sediment quality (granulometry, organic matter content, chemical contaminant concentrations), biological condition (diversity and abundance of benthic fauna, fish tissue contaminant levels and pathologies), and human dimensions (fish-tissue contaminant levels relative to human-health consumption limits, various aesthetic properties). Use of a probabilistic sampling design facilitated the calculation of statistics to estimate the spatial extent of the Reserve classified according to various categories (i.e., Good, Fair, Poor) of ecological condition relative to established thresholds of these indicators, where available. Overall, the majority of subtidal habitat in the SINERR appeared to be healthy, with over half (56.7 %) of the Reserve area having water quality, sediment quality, and benthic biological condition indicators rated in the healthy to intermediate range of corresponding guideline thresholds. None of the stations sampled had one or more indicators in all three categories rated as poor/degraded. While these results are encouraging, it should be noted that one or more indicators were rated as poor/degraded in at least one of the three categories over 40% of the Reserve study area, represented by 12 of the 30 stations sampled. Although measures of fish tissue chemical contamination were not included in any of the above estimates, a number of trace metals, pesticides, polybrominated diphenyl ethers (PBDEs), and polychlorinated biphenyls (PCBs) were found at low yet detectable levels in some fish at stations where fish were caught. Levels of mercury and total PCBs in some fish specimens fell within EPA guideline values considered safe, given a consumption rate of no more than four fish meals per month. Moreover, PCB congener profiles in sediments and fish in the SINERR exhibit a relative abundance of higher-chlorinated homologs which are uniquely characteristic of Aroclor 1268. It has been well-documented that sediments and fish in the creeks and marshes near the LCP Chemicals Superfund site, near Brunswick, Georgia, also display this congener pattern associated with Aroclor 1268, a highly chlorinated mixture of PCBs used extensively at a chlor-alkali plant that was in operation at the LCP site from 1955-1994. This report provides results suggesting that the protected habitats lying within the boundaries of the SINERR may be experiencing the effects of a legacy of chemical contamination at a site over 40km away. These effects, as well as other potential stressors associated with increased development of nearby coastal areas, underscore the importance of establishing baseline ecological conditions that can be used to track potential changes in the future and to guide management and stewardship of the otherwise relatively unspoiled ecosystems of the SINERR.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A study was initiated with field work in May 2007 to assess the status of ecological condition and stressor impacts throughout the U.S. continental shelf off South Florida, focusing on soft-bottom habitats, and to provide this information as a baseline for evaluating future changes due to natural or human-induced disturbances. The boundaries of the study region extended from Anclote Key on the western coast of Florida to West Palm Beach on the eastern coast of Florida, inclusive of the Florida Keys National Marine Sanctuary (FKNMS), and from navigable depths along the shoreline seaward to the shelf break (~100m). The study incorporated standard methods and indicators applied in previous national coastal monitoring programs — U.S. Environmental Protection Agency’s (EPA) Environmental Monitoring and Assessment Program (EMAP) and National Coastal Assessment (NCA) — including multiple measures of water quality, sediment quality, and biological condition. Synoptic sampling of the various indicators provided an integrative weight-of-evidence approach to assessing condition at each station and a basis for examining potential associations between presence of stressors and biological responses. A probabilistic sampling design, which included 50 stations distributed randomly throughout the region, was used to provide a basis for estimating the spatial extent of condition relative to the various measured indicators and corresponding assessment endpoints (where available). The study was conducted through a large cooperative effort by National Oceanic and Atmospheric Administration (NOAA)/National Centers for Coastal Ocean Science (NCCOS), EPA, U.S. Geological Survey (USGS), NOAA/Oceanic and Atmospheric Research (OAR)/Atlantic Oceanographic and Meteorological Laboratory in Miami, FKNMS, and the Florida Fish and Wildlife Conservation Commission (FWC). The majority of the South Florida shelf had high levels of dissolved oxygen (DO) in near-bottom water (> 5 mg L-1) indicative of “good” water quality.. DO levels in bottom waters exceeded this upper threshold at 98.8% throughout the coastal-ocean survey area. Only 1.2% of the region had moderate DO levels (2-5 mg/L) and no part of the survey area had DO <2.0 mg/L. In addition, offshore waters throughout the region had relatively low levels of total suspended solids (TSS), nutrients, and chlorophyll a indicative of oligotrophic conditions. Results suggested good sediment quality as well. Sediments throughout the region, which ranged from sands to intermediate muddy sands, had low levels of total organic carbon (TOC) below bioeffect guidelines for benthic organisms. Chemical contaminants in sediments were also mostly at low, background levels. For example, none of the stations had chemicals in excess of corresponding Effects-Range Median (ERM) probable bioeffect values or more than one chemical in excess of lower-threshold Effects-Range Low (ERL) values. Cadmium was the only chemical that occurred at moderate concentrations between corresponding ERL and ERM values. Sixty fish samples from 28 stations were collected and analyzed for chemical contaminants. Eleven of these samples (39% of sites) had moderate levels of contaminants, between lower and upper non-cancer human-health thresholds, and ten (36% of sites) had high levels of contaminants above the upper threshold.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This project characterized and assessed the condition of coastal water resources in the Dry Tortugas National Park (DRTO) located in the Florida Keys. The goal of the assessment was to: (1) identify the state of knowledge of natural resources that exist within the DRTO, (2) summarize the state of knowledge about natural and anthropogenic stressors and threats that affected these resources, and (3) describe strategies being implemented by DRTO managers to meet their resource management goals. The park, located in the Straits of Florida 113 km (70 miles) west of Key West, is relatively small (269 square kilometers) with seven small islands and extensive shallow water coral reefs. Significant natural resources within DRTO include coastal and oceanic waters, coral reefs, reef fisheries, seagrass beds, and sea turtle and bird nesting habitats. This report focuses on marine natural resources identified by DRTO resource managers and researchers as being vitally important to the Tortugas region and the wider South Florida ecosystem. Selected marine resources included physical resources (geology, oceanography, and water quality) and biological resources (coral reef and hardbottom benthic assemblages, seagrass and algal communities, reef fishes and macro invertebrates, and wildlife [sea turtles and sea-birds]). In the past few decades, some of these resources have deteriorated because of natural and anthropogenic factors that are local and global in scale. To meet mandated goals (Chapter 1), resource managers need information on: (1) the types and condition of natural and cultural resources that occur within the park and (2) the stressors and threats that can affect those resources. This report synthesizes and summarizes information on: (1) the status of marine natural resources occurring at DRTO; and (2) types of stressors and threats currently affecting those resources at the DRTO. Based on published information, the assessment suggests that marine resources at DRTO and its surrounding region are affected by several stressors, many of which act synergistically. Of the nine resource components assessed, one resource category – water quality – received an ecological condition ranking of "Good"; two components – the nonliving portion of coral reef and hardbottom and reef fishes – received a rating of "Caution"; and two components – the biotic components of coral reef and hardbottom substrates and sea turtles – received a rating of "Significant concern" (Table E-1). Seagrass and algal communities and seabirds were unrated for ecological condition because the available information was inadequate. The stressor category of tropical storms was the dominant and most prevalent stressor in the Tortugas region; it affected all of the resource components assessed in this report. Commercial and recreational fishing were also dominant stressors and affected 78% of the resource components assessed. The most stressed resource was the biotic component of coral reef and hardbottom resources, which was affected by 76% of the stressors. Water quality was the least affected; it was negatively affected by 12% of stressors. The systematic assessment of marine natural resources and stressors in the Tortugas region pointed to several gaps in the information. For example, of the nine marine resource components reviewed in this report, the living component of coral reefs and hardbottom resources had the best rated information with 25% of stressor categories rated "Good" for information richness. In contrast, the there was a paucity of information for seagrass and algal communities and sea birds resource components.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Digital maps of the coral reef ecosystem (<~30m deep) of Majuro Atoll, Republic of the Marshall Islands, were created through visual interpretation of remote sensing imagery. Digital Globe’s Quickbird II satellite images were acquired between 2004 and 2006 and georeferenced to within 1.6 m of their true positions. Reef ecosystem features were digitized directly into a GIS at a display scale of 1:4000 using a minimum feature size of 1000 square meters. Benthic features were categorized according to a classification scheme with attributes including zone (location, such as lagoon or forereef, etc.), structure (bottom type, such as sand or patch reef, etc.) and percent hard bottom. Ground validation of habitat features was conducted at 311 sites in 2009. Resulting maps consisted of 1829 features covering 366 square kilometers. Results demonstrate that reef zones occurred in a typical progression of narrow bands from offshore, though forereef, reef flat, shoreline, land, backreef, and lagoon habitats. Lagoon was the largest zone mapped and covered nearly 80% of the atoll, although much of it was too deep to have structures identified from the satellite imagery. Dominant habitat structures by area were pavement and aggregate reef, which covered 29% and 18% of the mapped structures, respectively. Based on the number of features, individual and aggregated patch reefs comprised over 40% of the features mapped. Products include GIS based maps, field videos and pictures, satellite imagery, PDF atlas, and this summary report. Maps and associated data can be used to support science and management activities on Majuro reef ecosystems including inventory, monitoring, conservation, and sustainable development applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Virginia Aquarium & Marine Science Center Foundation’s Stranding Response Program (VAQS) was awarded a grant in 2008 to conduct life history analysis on over 10 years of Tursiops truncatus teeth and gonad samples from stranded animals in Virginia. A major part of this collaborative grant included a workshop involving life historians from Hubbs-Sea World Research Institute (HSWRI), NOS, Texas A & M University (TAMU), and University of North Carolina Wilmington (UNCW). The workshop was held at the NOAA Center for Coastal Environmental Health & Biomolecular Research in Charleston, SC on 7-9 July 2009. The workshop convened to 1) address current practices among the groups conducting life history analysis, 2) decide on protocols to follow for the collaborative Prescott grant between VAQS and HSWRI, 3) demonstrate tissue preparation techniques and discuss shortcuts and pitfalls, 4) demonstrate data collection from prepared testes, ovaries, and teeth, and 5) discuss data analysis and prepare an outline and timeline for a future manuscript. The workshop concluded with discussions concerning the current collaborative Tursiops Life History Prescott grant award and the beginnings of a collaborative Prescott proposal with members of the Alliance of Marine Mammal Parks and Aquariums to further clarify reproductive analyses. This technical memorandum serves as a record of this workshop.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This report provides baseline biological data on fishes, corals and habitats in Coral and Fish Bays, St. John, USVI. A similar report with data on nutrients and contaminants in the same bays is planned to be completed in 2013. Data from NOAA’s long-term Caribbean Coral Reef Ecosystem Monitoring program was compiled to provide a baseline assessment of corals, fishes and habitats from 2001 to 2010, data needed to assess the impacts of erosion control projects installed from 2010 to 2011. The baseline data supplement other information collected as part of the USVI Watershed Stabilization Project, a project funded by the American Recovery and Reinvestment Act of 2009 and distributed through the NOAA Restoration Center, but uses data which is not within the scope of ARRA funded work. We present data on 16 ecological indicators of fishes, corals and habitats. These indicators were chosen because of their sensitivity to changes in water quality noted in the scientific literature (e.g., Rogers 1990, Larsen and Webb 2009). We report long-term averages and corresponding standard errors, plot annual averages, map indicator values and list inventories of coral and fish species identified among surveys. Similar data will be needed in the future to make rigorous comparisons and determine the magnitude of any impacts from watershed stabilization.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The primary objective of this study was to predict the distribution of mesophotic hard corals in the Au‘au Channel in the Main Hawaiian Islands (MHI). Mesophotic hard corals are light-dependent corals adapted to the low light conditions at approximately 30 to 150 m in depth. Several physical factors potentially influence their spatial distribution, including aragonite saturation, alkalinity, pH, currents, water temperature, hard substrate availability and the availability of light at depth. Mesophotic corals and mesophotic coral ecosystems (MCEs) have increasingly been the subject of scientific study because they are being threatened by a growing number of anthropogenic stressors. They are the focus of this spatial modeling effort because the Hawaiian Islands Humpback Whale National Marine Sanctuary (HIHWNMS) is exploring the expansion of its scope—beyond the protection of the North Pacific Humpback Whale (Megaptera novaeangliae)—to include the conservation and management of these ecosystem components. The present study helps to address this need by examining the distribution of mesophotic corals in the Au‘au Channel region. This area is located between the islands of Maui, Lanai, Molokai and Kahoolawe, and includes parts of the Kealaikahiki, Alalākeiki and Kalohi Channels. It is unique, not only in terms of its geology, but also in terms of its physical oceanography and local weather patterns. Several physical conditions make it an ideal place for mesophotic hard corals, including consistently good water quality and clarity because it is flushed by tidal currents semi-diurnally; it has low amounts of rainfall and sediment run-off from the nearby land; and it is largely protected from seasonally strong wind and wave energy. Combined, these oceanographic and weather conditions create patches of comparatively warm, calm, clear waters that remain relatively stable through time. Freely available Maximum Entropy modeling software (MaxEnt 3.3.3e) was used to create four separate maps of predicted habitat suitability for: (1) all mesophotic hard corals combined, (2) Leptoseris, (3) Montipora and (4) Porites genera. MaxEnt works by analyzing the distribution of environmental variables where species are present, so it can find other areas that meet all of the same environmental constraints. Several steps (Figure 0.1) were required to produce and validate four ensemble predictive models (i.e., models with 10 replicates each). Approximately 2,000 georeferenced records containing information about mesophotic coral occurrence and 34 environmental predictors describing the seafloor’s depth, vertical structure, available light, surface temperature, currents and distance from shoreline at three spatial scales were used to train MaxEnt. Fifty percent of the 1,989 records were randomly chosen and set aside to assess each model replicate’s performance using Receiver Operating Characteristic (ROC), Area Under the Curve (AUC) values. An additional 1,646 records were also randomly chosen and set aside to independently assess the predictive accuracy of the four ensemble models. Suitability thresholds for these models (denoting where corals were predicted to be present/absent) were chosen by finding where the maximum number of correctly predicted presence and absence records intersected on each ROC curve. Permutation importance and jackknife analysis were used to quantify the contribution of each environmental variable to the four ensemble models.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This report describes the creation and assessment of benthic habitat maps for shallow-water (<30m) marine environments of the Guánica/Parguera and Finca Belvedere Natural Reserve in southwest Puerto Rico. The objective was to provide spatially-explicit information on the habitat types, biological cover and live coral cover of the region’s coral reef ecosystem. These fine-scale habitat maps, generated by interpretation of 2010 satellite imagery, provide an update to NOAA’s previous digital maps of the U.S. Caribbean (Kendall et al., 2001) for these areas. Updated shallow-water benthic habitat maps for the Guánica/Parguera region are timely in light of ongoing restoration efforts in the Guánica Bay watershed. The bay is served directly by one river, the Rio Loco, which flows intermittently and more frequently during the rainy season. The watershed has gone through a series of manipulations and alterations in past decades, mainly associated with agricultural practices, including irrigation systems, in the upper watershed. The Guánica Lagoon, previously situated to the north of the bay, was historically the largest freshwater lagoon in Puerto Rico and served as a natural filter and sediment sink prior to the discharge of the Rio Loco into the Bay. Following alterations by the Southwest Water Project in the 1950s, the Lagoon’s adjacent wetland system was ditched and drained; no longer filtering and trapping sediment from the Rio Loco. Land use in the Guánica Bay/Rio Loco watershed has also gone through several changes (CWP, 2008). Similar to much of Puerto Rico, the area was largely deforested for sugar cane cultivation in the 1800s, although reforestation of some areas occurred following the cessation of sugar cane production (Warne et al., 2005). The northern area of the watershed is generally mountainous and is characterized by a mix of forested and agricultural lands, particularly coffee plantations. Closer to the coast, the Lajas Valley Agricultural Reserve extends north of Guánica Bay to the southwest corner of the island. The land use practices and watershed changes outlined above have resulted in large amounts of sediment being distributed in the Rio Loco river valley (CWP, 2008). Storm events and seasonal flooding also transport large amounts of sediment to the coastal waters. The threats of upstream watershed practices to coral reefs and the nearshore marine environment have been gaining recognition. Guánica Bay, and the adjacent marine waters, has been identified as a “management priority area” by NOAA’s Coral Reef Conservation Program (CRCP, 2012). In a recent Guánica Bay watershed management plan, several critical issues were outlined in regards to land-based sources of pollution (LBSP; CWP, 2008). These include: upland erosion from coffee agriculture, filling of reservoirs with sediment, in-stream channel erosion, loss of historical Guánica lagoon, legacy contaminants and sewage treatment (CWP, 2008). The plan recommended several management actions that could be taken to reduce impacts of LBSP, which form the basis of Guánica watershed restoration efforts.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Long-term living resource monitoring programs are commonly conducted globally to evaluate trends and impacts of environmental change and management actions. For example, the Woods Hole bottom trawl survey has been conducted since 1963 providing critical information on the biology and distribution of finfish and shellfish in the North Atlantic (Despres-Patango et al. 1988). Similarly in the Chesapeake Bay, the Maryland Department of Natural Resources (MDNR) Summer Blue Crab Trawl survey has been conducted continuously since 1977 providing management-relevant information on the abundance of this important commercial and recreational species. A key component of monitoring program design is standardization of methods over time to allow for a continuous, unbiased data set. However, complete standardization is not always possible where multiple vessels, captains, and crews are required to cover large geographic areas (Tyson et al. 2006). Of equal issue is technological advancement of gear which serves to increase capture efficiency or ease of use. Thus, to maintain consistency and facilitate interpretation of reported data in long-term datasets, it is imperative to understand and quantify the impacts of changes in gear and vessels on catch per unit of effort (CPUE). While vessel changes are inevitable due to ageing fleets and other factors, gear changes often reflect a decision to exploit technological advances. A prime example of this is the otter trawl, a common tool for fisheries monitoring and research worldwide. Historically, trawl nets were constructed of natural materials such as cotton and linen. However modern net construction consists of synthetic materials such as polyamide, polyester, polyethylene, and polypropylene (Nielson et. al. 1983). Over the past several decades, polyamide materials which will be referred to as nylon, has been a standard material used in otter trawl construction. These trawls are typically dipped into a latex coating for increased abrasion resistance, a process that is referred to as “green dipped.” More recently, polyethylene netting has become popular among living resource monitoring agencies. Polyethylene netting, commonly known as sapphire netting, consists of braided filaments that form a very durable material more resistant to abrasion than nylon. Additionally, sapphire netting allows for stronger knot strength during construction of the net further increasing the net’s durability and longevity. Also, sapphire absorbs less water with a specific gravity near 0.91 allowing the material to float as compared to nylon with specific gravity of 1.14 (Nielson et. al. 1983). This same property results in a light weight net which is more efficient in deployment, retrieval and fishing of the net, particularly when towing from small vessels. While there are many advantages to the sapphire netting, no comparative efficiency data is available for these two trawl net types. Traditional nylon netting has been used consistently for decades by the MDDNR to generate long term living resource data sets of great value. However, there is much interest in switching to the advanced materials. In addition, recent collaborative efforts between MDNR and NOAA’s Cooperative Oxford Laboratory (NOAA-COL) require using different vessels for trawling in support of joint projects. In order to continue collaborative programs, or change to more innovative netting materials, the influence of these changes must be demonstrated to be negligible or correction factors determined. Thus, the objective of this study was to examine the influence of trawl net type, vessel type, and their interaction on capture efficiency.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Chesapeake Bay is the largest estuary in the United States. It is a unique and valuable national treasure because of its ecological, recreational, economic and cultural benefits. The problems facing the Bay are well known and extensively documented, and are largely related to human uses of the watershed and resources within the Bay. Over the past several decades as the origins of the Chesapeake’s problems became clear, citizens groups and Federal, State, and local governments have entered into agreements and worked together to restore the Bay’s productivity and ecological health. In May 2010, President Barack Obama signed Executive Order number 13508 that tasked a team of Federal agencies to develop a way forward in the protection and restoration of the Chesapeake watershed. Success of both State and Federal efforts will depend on having relevant, sound information regarding the ecology and function of the system as the basis of management and decision making. In response to the executive order, the National Oceanic and Atmospheric Administration’s National Centers for Coastal Ocean Science (NCCOS) has compiled an overview of its research in Chesapeake Bay watershed. NCCOS has a long history of Chesapeake Bay research, investigating the causes and consequences of changes throughout the watershed’s ecosystems. This document presents a cross section of research results that have advanced the understanding of the structure and function of the Chesapeake and enabled the accurate and timely prediction of events with the potential to impact both human communities and ecosystems. There are three main focus areas: changes in land use patterns in the watershed and the related impacts on contaminant and pathogen distribution and concentrations; nutrient inputs and algal bloom events; and habitat use and life history patterns of species in the watershed. Land use changes in the Chesapeake Bay watershed have dramatically changed how the system functions. A comparison of several subsystems within the Bay drainages has shown that water quality is directly related to land use and how the land use affects ecosystem health of the rivers and streams that enter the Chesapeake Bay. Across the Chesapeake as a whole, the rivers that drain developed areas, such as the Potomac and James rivers, tend to have much more highly contaminated sediments than does the mainstem of the Bay itself. In addition to what might be considered traditional contaminants, such as hydrocarbons, new contaminants are appearing in measurable amounts. At fourteen sites studied in the Bay, thirteen different pharmaceuticals were detected. The impact of pharmaceuticals on organisms and the people who eat them is still unknown. The effects of water borne infections on people and marine life are known, however, and the exposure to certain bacteria is a significant health risk. A model is now available that predicts the likelihood of occurrence of a strain of bacteria known as Vibrio vulnificus throughout Bay waters.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sentinel species such as bottlenose dolphins (Tursiops truncatus) can be impacted by large-scale mortality events due to exposure to marine algal toxins. In the Sarasota Bay region (Gulf of Mexico, Florida, USA), the bottlenose dolphin population is frequently exposed to harmful algal blooms (HABs) of Karenia brevis and the neurotoxic brevetoxins (PbTx; BTX) produced by this dinoflagellate. Live dolphins sampled during capture-release health assessments performed in this region tested positive for two HAB toxins; brevetoxin and domoic acid (DA). Over a ten-year study period (2000–2009) we have determined that bottlenose dolphins are exposed to brevetoxin and/or DA on a nearly annual basis (i.e., DA: 2004, 2005, 2006, 2008, 2009; brevetoxin: 2000, 2004, 2005, 2008, 2009) with 36% of all animals testing positive for brevetoxin (n = 118) and 53% positive for DA (n = 83) with several individuals (14%) testing positive for both neurotoxins in at least one tissue/fluid. To date there have been no previously published reports of DA in southwestern Florida marine mammals, however the May 2008 health assessment coincided with a Pseudo-nitzschia pseudodelicatissima bloom that was the likely source of DA observed in seawater and live dolphin samples. Concurrently, both DA and brevetoxin were observed in common prey fish. Although no Pseudo-nitzschia bloom was identified the following year, DA was identified in seawater, fish, sediment, snails, and dolphins. DA concentrations in feces were positively correlated with hematologic parameters including an increase in total white blood cell (p = 0.001) and eosinophil (p<0.001) counts. Our findings demonstrate that dolphins within Sarasota Bay are commonly exposed to two algal toxins, and provide the impetus to further explore the potential long-term impacts on bottlenose dolphin health.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In June 2008, the NOAA National Ocean Service (NOS), in conjunction with the EPA National Health and Environmental Effects Laboratory (NHEERL), conducted an assessment of the status of ecological condition of soft-bottom habitat and overlying waters within the boundaries of Stellwagen Bank National Marine Sanctuary (SBNMS). The sanctuary lies approximately 20 nautical miles east of Boston, MA in the southwest Gulf of Maine between Cape Ann and Cape Cod and encompassing 638 square nautical miles (2,181 km2). A total of 30 stations were targeted for sampling using standard methods and indicators applied in prior NOAA coastal studies and EPA’s Environmental Monitoring and Assessment Program (EMAP) and National Coastal Assessment (NCA). A key feature adopted from these studies was the incorporation of a random probabilistic sampling design. Such a design provides a basis for making unbiased statistical estimates of the spatial extent of ecological condition relative to various measured indicators and corresponding thresholds of concern. Indicators included multiple measures of water quality, sediment quality, and biological condition (benthic fauna, fish tissue contaminant levels). Depths ranged from 31 – 137 m throughout the study area. About 76 % of the area had sediments composed of sands (< 20 % silt-clay), 17 % of the area was composed of intermediate muddy sands (20 – 80 % silt-clay), and 7 % of the sampled area consisted of mud (> 80 % siltclay). About 70 % of the area (represented by 21 sites) had sediment total organic carbon (TOC) concentrations < 5 mg/g and all but one site (located in Stellwagen Basin) had levels of TOC < 20 mg/g, which is well below the range potentially harmful to benthic fauna (> 50 mg/g). Surface salinities ranged from 30.6 – 31.5 psu, with the majority of the study region (approximately 80 % of the area) having surface salinities between 30.8 and 31.4 psu. Bottom salinities varied between 32.1 and 32.5 psu, with bottom salinities at all sites having values above the range of surface salinities. Surface-water temperatures varied between 12.1 and 16.8 ºC, while near-bottom waters ranged in temperature from 4.4 – 6.2 ºC. An index of density stratification (Δσt) indicated that the waters of SBNMS were stratified at the time of sampling. Values of Δσt at 29 of the 30 sites sampled in this study (96.7 % of the study area) varied from 2.1 – 3.2, which is within the range considered to be indicative of strong vertical stratification (Δσt > 2) and typical of the western Gulf of Maine in summer. Levels of dissolved oxygen (DO) were confined to a fairly narrow range in surface (8.8 – 10.4 mg/L) and bottom (8.5 – 9.6 mg/L) waters throughout the survey area. These levels are within the range considered indicative of good water quality (> 5 mg/L) with respect to DO. None of these waters had DO at low levels (< 2 mg/L) potentially harmful to benthic fauna and fish.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This baseline assessment of Jobos Bay and surrounding marine ecosystems consists of a two part series. The first report (Zitello et al., 2008) described the characteristics of the Bay and its watershed, including modeling work related to nutrients and sediment fluxes, based on existing data. The second portion of this assessment, presented in this document, presents the results of new field studies conducted to fill data gaps identified in previous studies, to provide a more complete characterization of Jobos Bay and the surrounding coral reef ecosystems. Specifically, the objective was to establish baseline values for the distribution of habitats, nutrients, contaminants, fi sh, and benthic communities. This baseline assessment is the first step in evaluating the effectiveness in changes in best management practices in the watershed. This baseline assessment is part of the Conservation Effects Assessment Project (CEAP), which is a multi-agency effort to quantify the environmental benefits of conservation practices used by agricultural producers participating in selected U.S. Department of Agriculture (USDA) conservation programs. Partners in the CEAP Jobos Bay Special Emphasis Watershed (SEW) included USDA’s Agricultural Research Service (ARS) and the Natural Resources Conservation Service (NRCS), National Oceanic and Atmospheric Administration (NOAA) and the Government of Puerto Rico. The project originated from an on-going collaboration between USDA and NOAA on the U.S. Coral Reef Task Force. The Jobos Bay watershed was chosen because the predominant land use is agriculture, including agricultural lands adjacent to the Jobos Bay National Estuarine Research Reserve (JBNERR or Reserve), one of NOAA’s 26 National Estuarine Research Reserves (NERR). This report is organized into six chapters that represent a suite of interrelated studies. Chapter 1 provides a short introduction to Jobos Bay, including the land use and hydrology of the watershed. Chapter 2 is focused on benthic mapping and provides the methods and results of newly created benthic maps for Jobos Bay and the surrounding coral reef ecosystem. Chapter 3 presents the results of new surveys of fish, marine debris, and reef communities of the system. Chapter 4 is focused on the distribution of chemical contaminants in sediments within the Bay and corals outside of the Bay. Chapter 5 focuses on quantifying nutrient and pesticide concentrations in the surface waters at the Reserve’s System-Wide Monitoring Program (SWMP) sites. Chapter 6 is a brief summary discussion that highlights key findings of the entire suite of studies.