67 resultados para gels drying


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Black mouth croaker (Atrobucca nibe) is considered as a new valuable fish stock in the Oman Sea. In this study, surimi was manufactured from nonmarket size of the fish, manually and different cryoprotectant agents were added to the surimi. Finally changes in physiochemical, microbiological and sensory quality, characteristics of the surimi and kamaboko gel samples were assessed during 6 months at freezing storage (-18ºC). Surimi samples with the addition of Iranian tragacanth gum (TG), xanthan gum (XG), chitosan (CS) and whey protein concentrate (WPC) at 1% (w/w) were prepared to evaluate their impacts as a cryoprotectant on the surimi, individually. The results showed that the whiteness and lightness indexes in all surimi samples were gradually decreased during frozen storage. This trend of decreasing was more intensity in the control sample from 61.08±0.131 to 54.21±0.067 was recorded (p<0.05). Water holding capacity (WHC) in all treatments was decreased during 6 months. The lowest WHC (g/g) was obtained in the surimi without cryoprotectants and maximum WHC was measured in Tcs and Twpc samples, respectively (p<0.05). The lowest breaking force was calculated in Txg (166.00±22.627 g) and Tc (271.50±263.16 g) during 6 months at frozen storage, respectively (p<0.05), while Twpc treatment with slight variations showed the highest breaking force (p<0.05). Also, the lowest gel strength was obtained in Txg (68.22±6.740 g.cm) after 6 month of frozen storage (p<0.05). All Kamaboko surimi gels texture profile analysis parameters decreaced with increasing shelf life. This decreasing trend in the control sample was more severe. Floding results were reduced in all samples during storage (p<0.05). The best protective results probably were obtained in WPC, chitosan and commercial cryoprotectant agents, respectively due to protein stabilization of myofibrillar proteins and the protein-protein network structure, leading to the formation of surimi gel with strong textural properties during frozen conditions. The average number of surimi polygonal structures were significantly decreased (number per mm2) and their area were significantly increased (μm2) in all treatments (p<0.05). With increasing storage time, moisture, protein contents and pH were decreaced. Maximun TVB-N index was calculated in Tc (7.93±0.400 mg/100g) and Txg (7.88±0.477), respectively (p<0.05). TBRAs index was increased in all treatments during frozen storage, while this trend was reached in maximum value in Tc (p<0.05). Sensory evaluation of the fish finger quality characteristics (color, odor, texture and overall acceptability) preapare from frozen black mouth croaker surimi was decreaced during 6 month frozen storage. After the period of frozen storage the highest quality scores were measured in Twpc, Tcs and Tcc samples, respectively (p<0.05). In this study, coliform bacteria were not found in all treatments during frozen storage. The surimi sample containing chitosan showed lower mesophilic and psychrotropic bacteria (log cfu/g) than other treatments during frozen storage (p<0.05). Salt-soluble proteins extractions of all treatments were decreased during frozen storage. This decreacing trend was highest in Tcs (45.74±0.176%) and lowest in Tc treatments after 6 month of frozen storage (29.92±0.224%) (p<0.05). Although commercial cryoprotectant agents were successful in limiting the denaturation of proteins but sugar contents were not accepted for diabetics or those who disagree with the sweet taste and high calorie food. Hence, commercial cryoprotectant agents can be replaced with whey protein concentrate and chitosan at 1% level (w/w) consider that they were showed proper protection of the surimi myofibrillar proteins during storage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to carry out Biometric studies, 75 samples were caught from 3 locations ( Tajan river, Sefidrud and Shirud) using Salic and the length (±1 mm) and weights (± 5 gr) of samples were determined. Using One-way ANOVA by SPPSS software, there wasn’t significant difference between locations in length and fecondity (P ≥0.01(, but there was significant difference between Shirud and tajan samples with sefidrud in weight ) P≤0.01(. In order to carry out genetic variation studies, 210 fish were caught from 3 different regions of the Iranian coastline (Khoshkrud, Tonekabon, Gorganrud) and 1 region in Azerbaijan (Waters of the Caspian Sea close to Kura River mouth) during 2008-2009 . Genomic DNA was extracted of fin using the phenol-chloroform. The quantity and quality of DNA from samples were assessed by spectrophptometer and 1% agarose gel electro-phoresis. PCR was carried out using 15 paired microsatellite primers. PCR products were separated on 8% polyacrylamide gels that were stained using silver nitrate. Molecular weight calculate using UVTech software. The recorded microsatellite genotypes were used as input data for the GENALEX software version 6 package in order to calculate allele and genotype frequencies, observed (Ho) and (He) expected heterozygosities and to test for deviations from Hardy-Weinberg equilibrium. Genetic distance between two populations was estimated from Nei standard genetic distance and genetic similarity index (Nei, 1972). Genetic differentiation between populations was also evaluated by the calculation of pairwise estimates of Fst and Rst values. From 15 SSR markers were used in this investigation, 9 of them were polymorph. Average of expected and observed heterozygosity was 0.54 and 0.49 respectively. Significant deviations from Hardy-Weinberg expectations were observed in all of location except Anzali lagoon- autumn in AF277576 and EF144125, Khoshkrud in EF144125 and Gorganrud and Kura in AF277576. Using Fst and Rst there was significant difference between locations ) P≤0.01(. According to Fst , the highest population differentiation (Fst= 0.217) was between Gorganrud and Khoshkrud that have the lowest Nm and the lowest (Fst= 0.086) was between Gorganrud and Tonekabon that have the highest Nm. Using Rst the highest population differentiation (Rst= 0.271) was between Tonekabon and spring Anzali lagoon and the lowest (Rst= 0.026) was between Tonekabon and Autumn Anzali 159 lagoon. Also the difference between Spring Anzali lagoon and Autumn Anzali lagoon was noticeable (Fst=0.15). AMOVA analysis with consideration of 2 sampling regions (Iran and Azerbaijan) and 7 sampling locations (Iran: Khoshkrud, Tonekabon, Gorganrud, Spring Anzali lagoon and Autumn Anzali lagoon ; Azerbaijan: the Kura mouth) revealed that almost all of the variance in data namely 83% )P≤0.01( was within locations, Genetic variances among locations was 14% )P≤0.01( and among regions was 3% )P≤0.01(. The genetic distance was the highest (0.646) between Gorganrud and Autumn Anzali lagoon populations, whereas the lowest distance (0.237) was between Gorganrud and Tonekabon River. Result obtained from the present study show that at least 2 different population of Rutilus frissi kutum are found in the Caspian sea,which are including the kura river population and the southern Caspian sea samples and it appears that there is more than one population in southern Caspian sea that should be attantioned in artifical reproduction Center and stoke rebilding.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A total of 361 caudal fin samples were collected from adult A. stellatus specimens caught in the north Caspian Sea, including specimens from Kazakhstan (Ural River), Russia (Volga River), Azerbaijan (Kura River), specimens caught in the south Caspian Sea including specimens from Fishery Zone 1 (from Astara to Anzali), Fishery Zone 2 (from Anzali to Ramsar), Fishery Zone 3 (from Nowshahr to Babolsar), Fishery Zone 4 (from Miyankaleh to Gomishan) as well as from specimens caught in Turkmenistan (all specimens were collected during the sturgeon stock assessment survey). About 2 g of fin tissue was removed from each caudal fin sample, stored in 96% ethyl alcohol and transferred to the genetic laboratory of the International Sturgeon Research Institute. Genomic DNA was extracted using phenol-chloroform method. The quality and quantity of DNA was assessed using 1% Agarose gel electrophoresis and Polymerase Chain Reaction (PCR) was conducted on the target DNA using 15 paired microsatellite primer. PCR products were electrophoresed on polyacrylamide gels (6%) that were stained using silver nitrate. Electrophoretic patterns and DNA bands were analyzed with BioCapt software. Allele count and frequency, genetic diversity, expected heterozygosity and observed heterozygosity allele number, and the effective allele number, genetic similarity and genetic distance, FST and RST were calculated. The Hardy Wienberg Equilibrium based on X2 and Analysis of Molecular Variance (AMOVA) at 10% confidence level was calculated using the Gene Alex software. Dendrogram for genetic distances and identities were calculated using TFPGA program for any level of the hierarchy. It is evident from the results obtained that the 15 paired primers studied, polymorphism was observed in 10 pairs in 12 loci, while one locus did not produce DNA bands. Mean allele number was 13.6. Mean observed and expected heterozygosity was 0.86 and 0.642, respectively. It was also seen that specimens from all regions were not in Hardy Wienberg Equilibrium in most of the loci (P≤0.001). Highest Fst (0.063) was observed when comparing specimens from Fishery Zone 2 and Fishery Zone 4 (Nm=3.7) and lowest FST (0.028) was observed when comparing specimens from the Volga River and those from the Ural River (8.7). Significant differences (P<0.01) were observed between RST recorded in the specimens studied. Highest genetic distance (0.604) and lowest genetic resemblance (0.547) were observed between specimens from Fishery zones 2 and 4. Lowest genetic distance (0.311) and highest genetic resemblance (0.733) was observed between specimens from Turkmenistan and specimens from Fishery zone 1. Based on the genetic dendrogeram tree derived by applying UPGMA algorithm, A. stellatus specimens from Fishery zone 2 or in other words specimens from the Sepidrud River belong to one cluster which divides into two clusters, one of which includes specimens from Fishery zones 1, 3 and 4 and specimens from Turkmenistan while the other cluster includes specimens from Ural, Volga and Kura Rivers. It is thus evident that the main population of this species belongs to the Sepidrud River. Results obtained from the present study show that at least eight different populations of A. stellatus are found in the north and south Caspian Sea, four of which are known populations including the Ural River population, the Volga River population, the Kura River population and the Sepidrud River populations. The four other populations identified belonging to Fishery zones 1, 3, and 4 and to Turkmenistan are most probably late or early spawners of the spring run and autumn run of each of the major rivers mentioned. Specific markers were also identified for each of the populations identified. The Ural River population can be identified using primers Spl-68, 54b and Spl-104, 163 170, 173, the Volga River population can be identified using primers LS-54b and Spl-104, 170, 173 113a and similarly the population from the Kura River can be identified using primers LS-34, 54b and Spl-163, 173 and that from the Sepidrud River can be identified using primers LS-19, 34, 54b and Spl-105, 113b. This study gives evidence of the presence of different populations of this species and calls for serious measures to be taken to protect the genetic stocks of these populations. Considering that the population of A. stellatus in Fishery zone 2 is an independent population of the Sepidrud River in the Gilan Province, the catch of these fishes in the region needs to be controlled and regulated in order to restore the declining stocks of this species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The genetic structure of pikeperch (Sander lucioperca) and perch (Perca fluviatilis) populations was studied using microsatellite technique. A total of 207 specimens of adult pikeperch were collected from Aras dam (57 specimens), Anzali wetland (50 specimens), Talesh (50 specimens) and Chaboksar (50 specimens) coasts. Also a total of 158 specimens of adult perch were collected from Anzali (Abkenar (50 specimens)and Hendekhale(48 specimens)) and Amirkolaye(60 specimens) wetlands. About 2 g of each specimen's dorsal fin was removed, stored in 96% ethyl alcohol and transferred to the genetic laboratory of the International Sturgeon Research Institute. Genomic DNA was extracted using ammonium-acetate method. The quality and quantity of DNA was assessed using 1% agarose gel electrophoresis. Polymerase Chain Reaction (PCR) was conducted on the target DNA using 15 pairs of microsatellite primers. PCR products were electrophoresed on poly acryl amide gels (6%) that were stained that were stained using silver nitrate. DNA bands were analyzed with BioCapt software. Allele count and frequency, genetic diversity, expected and observed heterozygosity , allele number and the effective allele number, genetic similarity and genetic distance, Fst, Rst, Hardy Weinberg Equilibrium based on X2 and Analysis of Molecular Variance (AMOVA) at 10% confidence level was calculated using the Gene Alex software. Dendogram for genetic distances and identities were calculated using TFPGA program for any level of hierarchy. The results for P. fluviatilis showed that from 15 pair of primers that were examined 6 polymorphic and 7 monomorphic loci were produced, while 2 loci didn't produce any DNA bands. Mean allele number was 4.1±1.1 and mean observed and expected heterozygosity was 0.56±0.12 and 0.58±0.14 respectively. It was also seen that specimens from all regions were not in Hardy Weinberg Equilibrium in some of loci (P<0.001). Highest Fst (0.095) with Nm=2.37 was observed between Hendekhale and Amirkolaye and the lowest Fst (0.004) with Nm=59.31 was observed between Abkenar and Hendekhale. According to AMOVA Significant difference (P<0.05) was observed between recorded Rst in the studied regions in Anzali and Amirkolaye lagoons. In another words there are two distinct populations of this species in Anzali and Amirkolaye lagoons. The highest genetic distance (0.181) and lowest genetic resemblance (0.834) were observed between specimens from Hendekhale and Amirkolaye and the lowest genetic distance (0.099) and highest genetic 176 resemblance (0.981) were observed between specimens from Abkenar and Hendekhale. Based on the genetic dendogram tree derived by applying UPGMA algorithm, specimens from Anzali and Amirkolaye wetlands have the same ancestor. On the other hand there is no noticeable genetic distance between the specimens of these two regions. Also the results for S. lucioperca showed that from 15 pair of primers that were examined 6 polymorphic and 7 monomorphic loci were produced, while 2 loci didn't produce any DNA bands. Mean allele number was 3.0±0.6 and mean observed and expected heterozygosity was 0.52±0.21 and 0.50±0.14 respectively. It was also seen that specimens from all regions were not in Hardy Weinberg Equilibrium in some of loci (P<0.001). Highest Fst (0.093) with Nm=2.43 was observed between Aras dam and Anzali wetland and the lowest Fst (0.022) with Nm=11.27 was observed between Talesh and Chaboksar coasts. Significant differences (P<0.05) were observed between recorded Rst in the studied regions exept for Talesh and Chaboksar Coasts. In another words there are three distinct populations of this species in Caspian sea, Anzali wetland and Aras dam. Highest genetic distance (0.110) and lowest genetic resemblance (0.896) were observed between specimens from Aras dam and Anzali wetland and the lowest genetic distance (0.034) and highest genetic resemblance (0.966) were observed between specimens from Talesh and Chaboksar coasts. Based on the genetic dendogram tree derived by applying UPGMA algorithm, specimens from Talesh and Chaboksar coasts have the lowest genetic distance. On the other hand the main population of this species belongs to Anzali wetland. Phylogenetic relationship of these two species was inferred using mitochondrial cytochrome b gene sequencing. For this purpose 2 specimens of P. fluviatilis from Anzali wetland, 2 specimens of S. lucioperca from Aras dam and 2 specimens of S. lucioperca from Anzali wetland were sequenced and submitted in Gene Bank. These sequences were aligned with Clustal W. The phylogenic relationships were assessed with Mega 4. The results of evolutionary history studies of these species using Neighbor-Joining and Maximum Parsimony methods showed that the evolutionary origin of pikeperch in Aras Dam and Anzali wetland is common. On the other hand these two species had common ancestor in about 4 million years ago. Also different sequences of any region specimens are supposed as different haplotypes. 177 As a conclusion the results of this study showed that microsatellite and mtDNA sequencing methods respectively are effective in genetic structure and phylogenic studies of P. fluviatilis and S. lucioperca.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The by-catch from the shrimp trawl fishery in Kalpitiya is mainly used for the production of dried fish, which provides an additional source of income for fishermen in the area. It has been observed that current handling practices along the value addition chain are responsible for the poor quality and low price of the end product. This study was aimed at identifying the shortcomings in such handling practices by fishermen and dried fish producers and assessing the quality of shrimp fishery by-catch along the processing chain in order to recommend more efficient utilization methods that will improve the quality of the end product. Fresh fish, dried fish and harbour water samples were tested for total coli forms, faecal coliforms, E. coli and Salmonella in order to assess their microbial quality: In addition, standard plate counts (SPC) of fish samples were also carried out. A survey was carried out from July-October 2006 at Kalpitiya, using a pre-tested questionnaire to collect information from individuals who have been engaged in dried fish processing. Average values obtained for freshly landed and dried fish respectively, were, SPC 9.88x10 super(5) CFU/g and 30.43x10 super(5) CFU/g, total coliforms 23.05 and 24.23 MPN/g and fecal coliforms 8.28 and 9.00 MPN/g. These values exceed the recommendations in the SL standards. A quarter of the landed fresh fish and 38% of dried fish from the producers were positive for E. coli and thus failed to show required end product quality. SPC of harbour water was 14.35x10 super(6) CFU/ml and all samples were found to be contaminated with E. coli. None of the fishermen and dried fish producers were satisfied with the quality of the end product. The reasons for poor quality as indicated by them were: limited availability of ice (75%), lack of infrastructure facilities (65%), uncertainty of markets (52%), lack of emphasis on quality (47%) and poor access to available technologies (41%). Respondents to the questionnaire also identified: unavailability of potable water, insulated boxes, good landing jetty, racks for drying fish, poor cold storage facilities and limitations in dried fish storage facilities, as further factors leading to the loss of quality in their products. Results demonstrate that improvements to the infrastructure facilities and conducting of proper awareness programmes on handling practices could lead for improvements in the quality of value added products prepared from the shrimp fishery by-catch at Kalpitiya.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The artisanal fish preservation methods in Uganda are characterized by extreme operating conditions. Consequently, vital nutritional components diminish in value and quantity which renders fish consumer nutritionally insecure. To establish the magnitude of nutritional loss, duplicate samples of Mukene Rastrineobola argentea were collected from Kiyindi landing site on L. Victoria and Moone landing site on L. Kyoga. Each set of duplicate samples was divided into five portions and kept on ice. For each preservation method a portion was processed into respective products at Food Bioscience and Agri-Business Laboratories aside from the control (fresh) sample. Both preserved and control samples were analysed for nutrient loss at Department of Chemistry, Makerere University using AOAC methods. The composition of fatty acids was determined by methanolysis gas chromatography and Mass spectrophotometry of the resultant methyl esters. The results indicate that nutrients of all preserved samples did not vary significantly from the control except for some fatty acids. The Eicosapentaenoic acid (EPA) in fresh samples declined from 6.72% to 1.08% in deep-fried samples constituting 83.93% nutrient loss. The sum ratio w3:w6 as well as EPA: DHA (Docosahexaenoic) ratio in fried samples also varied significantly (p<0.5) lower than 0.668 and 0.20 for the average of either preservation methods and experts recommended ratio respectively. Further research has been recommended to ascertain the causative factor, since Mukene frying is being promoted in the Great lakes region as alternative method to sun-drying. In conclusion, regular consumers of fried Mukene do not benefit much from the nutritional and health attributes of Omega 3 and 6.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fish production of the River Niger can best be estimated from a country by country evaluation of the tonnage exported and that consumed locally. All exported and some locally consumed fish are preserved by smoking or sun drying, a process which entails a loss of weight. Coefficients to correct for this of between 2.6 to 4 have been calculated depending on the type of product. A further loss occurs due to handling and to insect attack, which may account for up to 40% of the production. Taking the above factors into account the productions estimated for the various countries of the Niger River basin are as follows: Guinea (3,600 t), Mali (90,000 t), Upper Volta and Ivory Coast (negligible), Niger (5,200 t), Dahomey (1,200 t), Nigeria (25,000 t), Cameroon (3,000 t). A total production of 128,000 t is, therefore, obtained for the basin as a whole, excluding the Kainji Reservoir. At this level of production, there have been no intimations of overfishing from any part of the basin, and there is unanimity that fishing could be intensified. On the basis of the estimates of existing production and local estimates of potential production it is possible that up to 200,000 t of fish could be produced annually from the basin as a whole.