64 resultados para future cities
Resumo:
The Tanzania part of Lake Victoria is the most important single fishery resource for the country. Past fishing practice caused disparity between the relative abundance in the catches and in the available stocks by overfishing some species while under-fishing others. Preliminary studies of distribution pattern, biomass estimates, etc, as derived from bollom trawl exploratory data, and the trend of the commercial catch statistics from 1958 to 1970, suggest that many of the commercially preferred species may not have the biotic potential 10 sustain higher yields under present ecological and fishing regimes. Haplochromis and a few other fish might be the only hope. Geographic extension of fishing to deeper waters may not be very promising as species diversificarion and fish density decline with depth. To develop and manage the fisheries, make full use of the resource and ensure economic and biological perpetuation of thc fishery, the appropriate fishing strategy cannot be properly developcd overnight.
Resumo:
EAFFRO and UNPP/LVFRP bottom trawl exploratory data have been used to describe the depth distributional pattern. relative abundance and magnitude of the demersai fishes in Lake Victoria. The results have been compared with the commercial catch estimates, and various interpretations of the trends in the annual catches and experimental biomass estimates in relation to possible future developments of the fishery have been suggested. Though it is highly desirable to develop the fishery such as by supplementary trawling, certain social and biological consequences and considerations needs to proceed in graded steps guided by several research disciplines. The past trends of the fisheries of Lake Victoria are briefly considered. Recent exploratory bottom trawl data, by EAFFRO and UNDP/LVFRP, have been used to define demersal fish stocks of Lake Victoria in terms of their magnitude, relative abundance and distribution pattern by depth. Enstence of disparity between the relative abundance of the various species in their commercial catches and in their present biomass estimates is pointed out and the various aspects associated with the necessary modification of the fishing practices are discussed. Further and continuing research of the bio-socio-economic vectors of the fishery will be necessary in order to generate the rationale of an efficient fishing regime for a rational management strategy and realistic utilization of the fishery resource.
Resumo:
The Uganda sector of Lake Victoria occupies 29,580 km2 (43%). The lake used to boast of a multi-species fishery but presently relies on three major species Lates niloticus, Oreochromis niloticus and Rastrineobola argentea. During the past decade the total fish production on the Ugandan sector increased drastically from 17,000 tonnes in 1981 to about 13,000 tonnes 1991, indicating a healthy state of the fishery. This was contributed by a combination of factors including the explosive establishment of the introduced L. niloticus which contributed 60.8% in 1991 and the increase in the number of fishing canoes from 3470 in 1988 to 8000 in 1990. Isolated fishery resources studies carried out in different areas of the lake since 1971 seem, however, to indicate contrary trends in the available stocks and, therefore, the status of the fishery. In the experimental fishery, continued decline in catch rates have been recorded. Similarly, in the commercial fishery catch per unit of effort has been considerably poor (33 kg per canoe during January - March 1992) and the average size of individual fish laRded continued to decline, obviously pointing at possible over-fishing. This, therefore, calls for further urgent research on the available stocks for proper management strategies to be formulated.
Resumo:
Experimental trawling during the period 1981/86 and analysis of past commercial catch landings, mainly in the northern portion of Lake Victoria have indicated that the standing stocks and therefore, the estimates of sustainable yields of the most important fish species have unquestionably changed since the 1969/71 comprehensive lake-wide stock assessment survey. Lake Victoria which was originally a multi-species fishery now relies on two introduced species (Lates niloticus and Oreochromis niloticus) and one indigenous cyprinid (Rastrineobola argentea). Most of the traditional fish species, including the once dominant haplochromines, have either declined or disappeared. The catch rates in the experimental trawl catches declined from 797 kg/hr in 1969/71 to 575 kg/hr in 1981 and 166 kg/hr in 1985. The contribution of L. niloticus in the trawl catch increased from 0.9% in 1981 to 95.6% in 1985 while the contribution of the haplochromines decreased from about 91% to about 1% over the same period. The mean size of the individual fish caught (particularly the Nile perch) was also on the decline. Similar trends were also observed in the commercial fishery. However, recent observations in the Lake Kyoga commercial fishery that O. niloticus has now surpassed L.niloticus in importance may create more uncertainty regarding the future trends of the fish stocks of Lake Victoria. Inspite of the above situation, developments to increasingly exploit the fish stocks of the lake for export continue to take place. A number of fish processing and/or handling plants have been established in the Jinja, Kampala and Entebbe areas of the lake. Each of these plants is capable of handling upwards of 10 tons of fish a day, the target fish being L. niloticus and O. niloticus.