77 resultados para benthic and pelagic food webs
Resumo:
This study estimated the adoption rate of integrated aquaculture-agriculture (IAA) technologies in Bangladesh and their impact on poverty and fish and food consumption in adopting households. We used a novel, simulation-based approach to impact assessment called Tradeoff Analysis for Multi-Dimensional Impact Assessment (TOA-MD). We used the TOA-MD model to demonstrate how it is possible to use available data to estimate adoption rates in relevant populations, and to quantify impacts on distributional outcomes such as poverty and food security, thus demonstrating ex ante the potential for further investment in technology dissemination. The analysis used baseline and end-of-project survey data from WorldFish-implemented Development of Sustainable Aquaculture Project (DSAP), promoting IAA. This dataset was used to simulate adoption and assess its impacts on poverty and food security in the target population. We found that, if adopted, IAA had a significant positive impact on reducing poverty and improving food security and income.
Resumo:
Stable isotope (SI) values of carbon (δ13C) and nitrogen (δ15N) are useful for determining the trophic connectivity between species within an ecosystem, but interpretation of these data involves important assumptions about sources of intrapopulation variability. We compared intrapopulation variability in δ13C and δ15N for an estuarine omnivore, Spotted Seatrout (Cynoscion nebulosus), to test assumptions and assess the utility of SI analysis for delineation of the connectivity of this species with other species in estuarine food webs. Both δ13C and δ15N values showed patterns of enrichment in fish caught from coastal to offshore sites and as a function of fish size. Results for δ13C were consistent in liver and muscle tissue, but liver δ15N showed a negative bias when compared with muscle that increased with absolute δ15N value. Natural variability in both isotopes was 5–10 times higher than that observed in laboratory populations, indicating that environmentally driven intrapopulation variability is detectable particularly after individual bias is removed through sample pooling. These results corroborate the utility of SI analysis for examination of the position of Spotted Seatrout in an estuarine food web. On the basis of these results, we conclude that interpretation of SI data in fishes should account for measurable and ecologically relevant intrapopulation variability for each species and system on a case by case basis.
Resumo:
The adjacency of 2 marine biogeographic regions off Cape Hatteras, North Carolina (NC), and the proximity of the Gulf Stream result in a high biodiversity of species from northern and southern provinces and from coastal and pelagic habitats. We examined spatiotemporal patterns of marine mammal strandings and evidence of human interaction for these strandings along NC shorelines and evaluated whether the spatiotemporal patterns and species diversity of the stranded animals reflected published records of populations in NC waters. During the period of 1997–2008, 1847 stranded animals were documented from 1777 reported events. These animals represented 9 families and 34 species that ranged from tropical delphinids to pagophilic seals. This biodiversity is higher than levels observed in other regions. Most strandings were of coastal bottlenose dolphins (Tursiops truncatus) (56%), harbor porpoises (Phocoena phocoena) (14%), and harbor seals (Phoca vitulina) (4%). Overall, strandings of northern species peaked in spring. Bottlenose dolphin strandings peaked in spring and fall. Almost half of the strandings, including southern delphinids, occurred north of Cape Hatteras, on only 30% of NC’s coastline. Most stranded animals that were positive for human interaction showed evidence of having been entangled in fishing gear, particularly bottlenose dolphins, harbor porpoises, short-finned pilot whales (Globicephala macrorhynchus), harbor seals, and humpback whales (Megaptera novaeangliae). Spatiotemporal patterns of bottlenose dolphin strandings were similar to ocean gillnet fishing effort. Biodiversity of the animals stranded on the beaches reflected biodiversity in the waters off NC, albeit not always proportional to the relative abundance of species (e.g., Kogia species). Changes in the spatiotemporal patterns of strandings can serve as indicators of underlying changes due to anthropogenic or naturally occurring events in the source populations.
Resumo:
Technological innovation has made it possible to grow marine finfish in the coastal and open ocean. Along with this opportunity comes environmental risk. As a federal agency charged with stewardship of the nation’s marine resources, the National Oceanic and Atmospheric Administration (NOAA) requires tools to evaluate the benefits and risks that aquaculture poses in the marine environment, to implement policies and regulations which safeguard our marine and coastal ecosystems, and to inform production designs and operational procedures compatible with marine stewardship. There is an opportunity to apply the best available science and globally proven best management practices to regulate and guide a sustainable United States (U.S.) marine finfish farming aquaculture industry. There are strong economic incentives to develop this industry, and doing so in an environmentally responsible way is possible if stakeholders, the public and regulatory agencies have a clear understanding of the relative risks to the environment and the feasible solutions to minimize, manage or eliminate those risks. This report spans many of the environmental challenges that marine finfish aquaculture faces. We believe that it will serve as a useful tool to those interested in and responsible for the industry and safeguarding the health, productivity and resilience of our marine ecosystems. This report aims to provide a comprehensive review of some predominant environmental risks that marine fish cage culture aquaculture, as it is currently conducted, poses in the marine environment and designs and practices now in use to address these environmental risks in the U.S. and elsewhere. Today’s finfish aquaculture industry has learned, adapted and improved to lessen or eliminate impacts to the marine habitats in which it operates. What progress has been made? What has been learned? How have practices changed and what are the results in terms of water quality, benthic, and other environmental effects? To answer these questions we conducted a critical review of the large body of scientific work published since 2000 on the environmental impacts of marine finfish aquaculture around the world. Our report includes results, findings and recommendations from over 420 papers, primarily from peer-reviewed professional journals. This report provides a broad overview of the twenty-first century marine finfish aquaculture industry, with a targeted focus on potential impacts to water quality, sediment chemistry, benthic communities, marine life and sensitive habitats. Other environmental issues including fish health, genetic issues, and feed formulation were beyond the scope of this report and are being addressed in other initiatives and reports. Also absent is detailed information about complex computer simulations that are used to model discharge, assimilation and accumulation of nutrient waste from farms. These tools are instrumental for siting and managing farms, and a comparative analysis of these models is underway by NOAA.
Resumo:
The Monitor National Marine Sanctuary (MNMS) was the nation’s first sanctuary, originally established in 1975 to protect the famous civil war ironclad shipwreck, the USS Monitor. Since 2008, sanctuary sponsored archeological research has branched out to include historically significant U-boats and World War II shipwrecks within the larger Graveyard of the Atlantic off the coast of North Carolina. These shipwrecks are not only important for their cultural value, but also as habitat for a wide diversity of fishes, invertebrates and algal species. Additionally, due to their unique location within an important area for biological productivity, the sanctuary and other culturally valuable shipwrecks within the Graveyard of the Atlantic are potential sites for examining community change. For this reason, from June 8-30, 2010, biological and ecological investigations were conducted at four World War II shipwrecks (Keshena, City of Atlanta, Dixie Arrow, EM Clark), as part of the MNMS 2010 Battle of the Atlantic (BOTA) research project. At each shipwreck site, fish community surveys were conducted and benthic photo-quadrats were collected to characterize the mobile conspicuous fish, smaller prey fish, and sessile invertebrate and algal communities. In addition, temperature sensors were placed at all four shipwrecks previously mentioned, as well as an additional shipwreck, the Manuela. The data, which establishes a baseline condition to use in future assessments, suggest strong differences in both the fish and benthic communities among the surveyed shipwrecks based on the oceanographic zone (depth). In order to establish these shipwrecks as sites for detecting community change it is suggested that a subset of locations across the shelf be selected and repeatedly sampled over time. In order to reduce variability within sites for both the benthic and fish communities, a significant number of surveys should be conducted at each location. This sampling strategy will account for the natural differences in community structure that exist across the shelf due to the oceanographic regime, and allow robust statistical analyses of community differences over time.
Resumo:
NOAA’s Coral Reef Conservation program (CRCP) develops coral reef management priorities by bringing together various partners to better understand threats to coral reef ecosystems with the goal of conserving, protecting and restoring these resources. Place-based and ecosystem-based management approaches employed by CRCP require that spatially explicit information about benthic habitats and fish utilization are available to characterize coral reef ecosystems and set conservation priorities. To accomplish this, seafloor habitat mapping of coral reefs around the U.S. Virgin Islands (USVI) and Puerto Rico has been ongoing since 2004. In 2008, fishery acoustics surveys were added to NOAA survey missions in the USVI and Puerto Rico to assess fish distribution and abundance in relation to benthic habitats in high priority conservation areas. NOAA’s National Centers for Coastal Ocean Science (NCCOS) have developed fisheries acoustics survey capabilities onboard the NOAA ship Nancy Foster to complement the CRCP seafloor habitat mapping effort spearheaded by the Center for Coastal Monitoring and Assessment Biogeography Branch (CCMA-BB). The integration of these activities has evolved on the Nancy Foster over the three years summarized in this report. A strategy for improved operations and products has emerged over that time. Not only has the concurrent operation of multibeam and fisheries acoustics surveys been beneficial in terms of optimizing ship time and resources, this joint effort has advanced an integrated approach to characterizing bottom and mid-water habitats and the fishes associated with them. CCMA conducts multibeam surveys to systematically map and characterize coral reef ecosystems, resulting in products such as high resolution bathymetric maps, backscatter information, and benthic habitat classification maps. These products focus on benthic features and live bottom habitats associated with them. NCCOS Centers (the Center for Coastal Fisheries and Habitat Research and the Center for Coastal Environmental Health and Biomolecular Research) characterize coral reef ecosystems by using fisheries acoustics methods to capture biological information through the entire water column. Spatially-explicit information on marine resources derived from fisheries acoustics surveys, such as maps of fish density, supports marine spatial planning strategies and decision making by providing a biological metric for evaluating coral reef ecosystems and assessing impacts from pollution, fishing pressure, and climate change. Data from fisheries acoustics surveys address management needs by providing a measure of biomass in management areas, detecting spatial and temporal responses in distribution relative to natural and anthropogenic impacts, and identifying hotspots that support high fish abundance or fish aggregations. Fisheries acoustics surveys conducted alongside multibeam mapping efforts inherently couple water column data with information on benthic habitats and provide information on the heterogeneity of both benthic habitats and biota in the water column. Building on this information serves to inform resource managers regarding how fishes are organized around habitat structure and the scale at which these relationships are important. Where resource managers require place-based assessments regarding the location of critical habitats along with high abundances of fish, concurrent multibeam and fisheries acoustics surveys serve as an important tool for characterizing and prioritizing coral reef ecosystems. This report summarizes the evolution of fisheries acoustics surveys onboard the NOAA ship Nancy Foster from 2008 to 2010, in conjunction with multibeam data collection, aimed at characterizing benthic and mid-water habitats in high priority conservation areas around the USVI and Puerto Rico. It also serves as a resource for the continued development of consistent data products derived from acoustic surveys. By focusing on the activities of 2010, this report highlights the progress made to date and illustrates the potential application of fisheries data derived from acoustic surveys to the management of coral reef ecosystems.
Resumo:
The occurrence of hypoxia, or low dissolved oxygen, is increasing in coastal waters worldwide and represents a significant threat to the health and economy of our Nation’s coasts and Great Lakes. This trend is exemplified most dramatically off the coast of Louisiana and Texas, where the second largest eutrophication-related hypoxic zone in the world is associated with the nutrient pollutant load discharged by the Mississippi and Atchafalaya Rivers. Aquatic organisms require adequate dissolved oxygen to survive. The term “dead zone” is often used in reference to the absence of life (other than bacteria) from habitats that are devoid of oxygen. The inability to escape low oxygen areas makes immobile species, such as oysters and mussels, particularly vulnerable to hypoxia. These organisms can become stressed and may die due to hypoxia, resulting in significant impacts on marine food webs and the economy. Mobile organisms can flee the affected area when dissolved oxygen becomes too low. Nevertheless, fish kills can result from hypoxia, especially when the concentration of dissolved oxygen drops rapidly. New research is clarifying when hypoxia will cause fish kills as opposed to triggering avoidance behavior by fish. Further, new studies are better illustrating how habitat loss associated with hypoxia avoidance can impose ecological and economic costs, such as reduced growth in commercially harvested species and loss of biodiversity, habitat, and biomass. Transient or “diel-cycling” hypoxia, where conditions cycle from supersaturation of oxygen late in the afternoon to hypoxia or anoxia near dawn, most often occurs in shallow, eutrophic systems (e.g., nursery ground habitats) and may have pervasive impacts on living resources because of both its location and frequency of occurrence.
Resumo:
Algae are the most abundant photosynthetic organisms in marine ecosystems and are essential components of marine food webs. Harmful algal bloom or “HAB” species are a small subset of algal species that negatively impact humans or the environment. HABs can pose health hazards for humans or animals through the production of toxins or bioactive compounds. They also can cause deterioration of water quality through the buildup of high biomass, which degrades aesthetic, ecological, and recreational values. Humans and animals can be exposed to marine algal toxins through their food, the water in which they swim, or sea spray. Symptoms from toxin exposure range from neurological impairment to gastrointestinal upset to respiratory irritation, in some cases resulting in severe illness and even death. HABs can also result in lost revenue for coastal economies dependent on seafood harvest or tourism, disruption of subsistence activities, loss of community identity tied to coastal resource use, and disruption of social and cultural practices. Although economic impact assessments to date have been limited in scope, it has been estimated that the economic effects of marine HABs in U.S. communities amount to at least $82 million per year including lost income for fisheries, lost recreational opportunities, decreased business in tourism industries, public health costs of illness, and expenses for monitoring and management. As reviewed in the report, Harmful Algal Research and Response: A Human Dimensions Strategy1, the sociocultural impacts of HABs may be significant, but remain mostly undocumented.
Resumo:
Silver belly (Leiognathus Spp.) forms a major fishery in recent years in the Rameswaram island but fetches for the fishermen very low prices ranging from Rs. 0.03 to 0.12/Kg only, there being practically no demand for the fish. The possibilities of utilizing this cheap fish are discussed and the processing method described. During the glut season the cost of production of Silver belly fish meal works out to competitive prices of Rs. 500 to 700/ton. The silver belly fish meal is of high quality with good protein content averaging 57.71% in commercial samples and 61.90% in laboratory samples and with a high pepsin digestibility of 90.0% to 92.5%. The essential amino acid composition of the Silver belly fish meal compares very favorably with other round fish meals, with high contents of lysine, leucine, arginine, isoleucine, methionine, phenyl alanine, threonine and valine. Since there is good demand for fish meal as poultry and cattle food both in the internal and external markets, there is good scope for large scale production and sale of fish meal.
Resumo:
The growth performance of a predatory snakehead, Channa striatus was tested by supplying tadpoles of Rana tigrina and fingerlings of Puntius gonionotus and Labeo rohita as prey for a period of 21 days in aquaria. Prey consumption by C. striatus was significantly different (P<0.05) for different prey used (T1 - R. tigrina, T2 - P. gonionotus, T3 - L. rohita). Tadpoles of R. tigrina were preferred by the predator (C. striatus) over P. gonionotus and L. rohita although tadpole is nutritionally inferior to each of P. gonionotus and L. rohita. Each predator rayed on 50-330 mg per day per g of their body weight. Fish preyed on tadpoles also showed the highest growth. Significant difference in weight gain was found between T1 and T2 and also between T1 and T3 but no difference was found between T2 and T3. Food conversion ratio (FCR) was found to be lowest in treatment T3 followed by the treatments T2 and T1 respectively.
Resumo:
This commodity and product identification research was undertaken in the context of the CGIAR Research Program on Aquatic Agricultural Systems (AAS). AAS seeks to reduce poverty and improve food security for the millions of small-scale fishers and farmers who depend on the world’s floodplains, deltas and coasts. The objective of this research is to strengthen the capacity of AAS to undertake value chain studies with high potential impact on smallholders. The capacity-building aspect of this research was focused on the process of commodity and product identification for value chain analysis. Its scope was limited to fish and other aquatic animals and products in the Tonle Sap area identified for AAS intervention. The result of the identification process was the selection of a number of commodities and products that were deemed to involve a high number of smallholders along the value chain and that have high market development potential.
Resumo:
To identify the food habits of three species of Mastacembelidae namely Mastacembelus armatus, Mastacembelus pancalus and Macrognathus aculeatus, the gut content analysis was performed by three methods i.e. occurrence method, points method and index of fullness method. All three species were found to consume prawn, molluscs, insects, earth warm, debris and plant materials. M. armatus and M. pan cal us were found to feed mainly on animal food items and 84.68% of different types of animal food were taken by M. armatus and 62.72% by M. pancalus. M. aculeatus was found to consume 44.86% of different types of animal food items, 53.51% of debris and plant materials which indicated that this fish feeds almost equally on animal and plant food. Analysis of the food habits showed that both M. armatus and M. pancalus are carnivore in nature with higher feeding preference for animal food namely prawn, crabs, fishes, molluscs etc. On the other hand, M. aculeatus is an omnivore in nature feeding almost equally on animal and plant food.
Resumo:
The population dynamics of Daphnia magna was studied in two integrated fish-cum-poultry ponds (duck-fish and chicken-fish). The seasonal changes in the population of D. magna were recorded. Peak population of the zooplankter was recorded in the month of January in both ponds. The birth rate (b), growth rate (r) and death rate {d) of D. magna were studied in field as well as in the laboratory. Three temperatures and three different food concentrations were selected for laboratory study. The maximum values of (b) and (r) were recorded during December-January in field. Under laboratory conditions, highest birth and death rate occurred at lowest temperature (15 °C). Both food and temperature were found to affect the population dynamics of the species; longest life span and maximum population were recorded at lowest temperature and maximum food concentration.
Resumo:
The CGIAR Research Program on Aquatic Agricultural Systems (AAS) seeks to reduce poverty and improve food security for the millions of small-scale fishers and farmers who depend on the world’s floodplains, deltas and coasts. AAS combines more conventional approaches for introducing and scaling technical innovations, such as applied research and training, with approaches that foster innovation and promote institutional and policy change. Specifically, AAS utilizes participatory action research with communities to identify technology and policy solutions that best meet community long-term needs. One of the themes identified under AAS is the role of self-help groups in increasing livelihood resilience of agriculture and fisheries communities. As AAS establishes a hub of operations in Cambodia, AAS and Oxfam America are cooperating to investigate the potential of community-based self-help groups as a strategy for AAS implementation. As part of this cooperation, Oxfam America undertook this consultancy to analyze and describe the role, efficiency and effectiveness of the various types of self-help groups in Cambodia. This report gives an overview of this program which aims to conduct a field-based study to identify the types, main characteristics and effectiveness of self-help groups, with a particular focus on livelihood resilience of agriculture and fisheries communities.
Resumo:
The importance of selection of species for culture according to the ecological niches and fish food organisms is highlighted with respect to the Fox Sagar, an irrigation take. The tank was infested with submerged vegetation as well as minnows and weed fishes, which rendered the tank unsuitable for the culture of Indian major carps. The tank was stocked with 8000 fingerlings of Channa marulius and C. striatus during 1981 by the local fisherman co-operative society. Only partial harvest was possible during 1982 because of high water level. The final harvest was in April-May, 1983. The yield obtained was 3640 kg during the culture period of about 20 months.