162 resultados para age-appropriate restraint
Resumo:
Two examples of indirect validation are described for age-reading methods of Pacific cod (Gadus macrocephalus). Aging criteria that exclude faint translucent zones (checks) in counts of annuli and criteria that include faint zones were both tested. Otoliths from marked and recaptured fish were used to back-calculate the length of each fish at the time of its release by using measurements of the area of annuli. Estimated fish size at time of release and actual observed fish size were similar, supporting the assumption that translucent zones are laid down on an annual basis. A second method for validating reading criteria used otolith age and von Bertalanffy parameters, estimated from the tagging data, to predict how much each fish grew in length after tagging. We found that otolith aging criteria applied to otoliths from tagged and recovered Pacific cod predicted quite accurately the growth increments that we observed in these specimens. These results provide further evidence that the current aging criteria are not underestimating the age of the fish and support our current interpretation of checks (i.e., as subannual marks). We expect these indirect validations to advance age determination for Pacific cod, which in turn would enhance development of stock assessment methods based on age structure for this species in the eastern Bering Sea.
Resumo:
The northwest Atlantic population of thorny skates (Amblyraja radiata) inhabits an area that ranges from Greenland and Hudson Bay, Canada, to South Carolina. Despite such a wide range, very little is known about most aspects of the biology of this species. Recent stock assessment studies in the northeast United States indicate that the biomass of the thorny skate is below the threshold levels mandated by the Sustainable Fisheries Act. In order to gain insight into the life history of this skate, we estimated age and growth for thorny skates, using vertebral band counts from 224 individuals ranging in size from 29 to 105 cm total length (TL). Age bias plots and the coefficient of variation indicated that our aging method represents a nonbiased and precise approach for the age assessment of A. radiata. Marginal increments were significantly different between months (Kruskal-Wallis P<0.001); a distinct trend of increasing monthly increment growth began in August. Age-at-length data were used to determine the von Bertalanffy growth parameters for this population: L∞ = 127 cm (TL) and k= 0.11 for males; L∞ = 120 cm (TL) and k= 0.13 for females. The oldest age estimates obtained for the thorny skate were 16 years for both males and females, which corresponded to total lengths of 103 cm and 105 cm, respectively.
Resumo:
Age estimates for striped trumpeter (Latris lineata) from Tasmanian waters were produced by counting annuli on the transverse section of sagittal otoliths and were validated by comparison of growth with known-age individuals and modal progression of a strong recruitment pulse. Estimated ages ranged from one to 43 years; fast growth rates were observed for the first five years. Minimal sexual dimorphism was shown to exist between length, weight, and growth characteristics of striped trumpeter. Seasonal growth variability was strong in individuals up to at least age four, and growth rates peaked approximately one month after the observed peak in sea surface temperature. A modified two-phase von Bertalanffy growth function was fitted to the length-at-age data, and the transition between growth phases was linked to apparent changes in physiological and life history traits, including offshore movement as fish approach maturity. The two-phase curve was found to represent the mean length at age in the data better than the standard von Bertalanffy growth function. Total mortality was estimated by using catch curve analysis based on the standard and two-phase von Bertalanffy growth functions, and estimates of natural mortality were calculated by using two empirical models, one based on longevity and the other based on the parameters L∞ and k from both growth functions. The interactions between an inshore gillnet fishery targeting predominately juveniles and an offshore hook fishery targeting predominately adults highlight the need to use a precautionary approach when developing harvest strategies.
Resumo:
Nurseries play an important part in the production of marine f ishes. Determining the relative importance of different nurseries in maintaining the parental population, however, can be difficult. In the western Gulf of Alaska, the Kodiak Island vicinity may be particularly well suited as a pollock nursery because of a prey-rich nearshore environment. Our objectives were 1) to examine age-0 pollock body condition, growth, and diet for evidence of a nearshore-shelf effect, and 2) to determine if variation in the potential prey field of zooplankton was associated with this effect. This was a pilot study that occurred in three bays and over the adjacent shelf off east Kodiak Island during 5−18 September 1993. Sampling occurred only during night at locations where echo sign indicated the presence of age-0 pollock. Echo sign was targeted to increase the chance of collecting fish given the limited vessel time. Fish condition was indicated by length-specific body weight. Growth rate indices were estimated for three different periods by using fish lengthage data and daily otolith increment widths: 1) from hatching date to capture, 2) 1−5 d before capture, and 3) 6−10 d before capture. Fish diet was determined from gut content analysis. Considerable variation among areas was evident in zooplankton composition, and fish condition, growth, and diet. However, relatively high prey densities, as well as fish condition and growth rates indicated that Chiniak Bay was particularly well suited as a pollock nursery. Hatching-date distributions indicated that most of the age-0 walleye pollock from bays were spawned earlier than were those from the shelf. The benefit of being reared in nearshore areas is therefore realized more by individuals that were spawned early than by individuals spawned relatively late.
Resumo:
Sand sole, Psettichthys melanostictus, is a small but important part of the west coast groundfish fishery. It has never been assessed and there is a limited amount of biological data for the species. We provide the first estimates of age and growth for California populations and compare them with studies from other areas. We found that sand sole is a rapidly growing species which may show a strong latitudinal gradient in growth rate. We also found evidence of a recent, strong cohortrelated shift in the sex ratio of the population towards fewer females. In addition we examined data from the Washington, Oregon, and California commercial fishery to make an initial determination of population status. We found that catch per unit of effort in commercial trawls experienced a decline over time but has rebounded in recent years, except central California (the southern part of its commercial range), where the decline has not reversed.
Resumo:
Yellowfin sole, Pleuronectes asper, is the second most abundant flatfish in the North Pacific Ocean and is most highly concentrated in the eastern Bering Sea. It has been a target species in the eastern Bering Sea since the mid-1950's, initially by foreign distant-water fisheries but more recently by U.S. fisheries. Annual commercial catches since 1959 have ranged from 42,000 to 554,000 metric tons (t). Yellowfin sole is a relatively small flatfish averaging about 26 cm in length and 200 g in weight in commercial catches. It is distributed from nearshore waters to depths of about 100 m in the eastern Bering Sea in summer, but moves to deeper water in winter to escape sea ice. Yellowfin sole is a benthopelagic feeder. It is a longlived species (>20 years) with a correspondingly low natural mortality rate estimated at 0.12. After being overexploited during the early years of the fishery and suffering a substantial decline in stock abundance, the resource has recovered and is currently in excellent condition. The biomass during the 1980's may have been as high as, if not higher than, that at the beginning of the fishery. Based on results of demersal trawl surveys and two age structured models, the current exploitable biomass has been estimated to range between 1.9 and 2.6 million t. Appropriate harvest strategies were investigated under a range of possible recruitment levels. The recommended harvest level was calculated by multiplying the yield derived from the FOI harvest level (161 g at F = 0.14) hy an average recruitment value resulting in a commercial harvest of 276,900 t, or about 14% of the estimated exploitable biomass.
Resumo:
Size-at-50% maturity, age and growth, of Oreochromis (Nyasalapia) karongae (‘chambo’) in Lakes Malawi and Malombe were studied. Similar size-at-50% maturity and growth patterns were found for populations in Lake Malawi, but differences were observed for Lake Malombe populations, suggesting that current chambo fisheries management regulations, based on findings from the southern part of Lake Malawi, may be applicable to the central and southern parts of that lake, but not to Lake Malombe.
Resumo:
This study was carried out to identify factors that influence choice of fishing location and carry out profitability analysis of Chilimira and Gillnet in different fishing locations. A survey using semi-structured questionnaire was administered to 99 Gillnet and 101 Chilimira fishers in Nankumba Peninsula in Mangochi District. The logit model was used to determine the factors influencing choice of fishing location among the fishers. The study showed that 92.1% of Chilimira fishers are operating in offshore areas while 69.7% Gillnet fishers are operating in inshore areas. Chilimira offshore fishers have higher daily average gross margins than their inshore counterparts and Gillnet fishers. However, they incurred more operating costs than the inshore Chilimira and Gillnet fishers. Furthermore, they find their fishing occupation more rewarding as evidenced by the higher returns to labour. The factors that influenced fisher’s choice of fishing location were Age of the fisher, type of fishing vessel and gear, possession of motor sail engine and access to information about previous day’s catch rates. Finally the study concluded that artisanal fishers in Malawi use different criteria in deciding where to fish. The criterion involves a complex interaction of biological, technological, personal and economical factors and time. However, the resource constrained artisanal fisher will need support to enable him exploit offshore fishery resources. Consequently the study recommends that appropriate fishery development interventions by the government and other stakeholders must adapt to the economics and lifestyles driving the artisanal fishers to fish in particular locations and therefore, build on this foundation to improve the existing fishing technologies.
Resumo:
In 2001, representative samples of adult Columbia Basin chinook (Oncorhynchus tshawytscha), sockeye (O. nerka), and coho salmon (O. kisutch) populations at Bonneville Dam were collected. Fish were trapped, anesthetized, sampled for scales and biological data, revived, and then released adult migrating salmonids. Scales were examined to estimate age composition; the results contributed to an ongoing database for age class structure of Columbia Basin salmon populations. Based on scale analysis of chinook salmon, four-year-old fish (from brood year [BY] 1997) comprised 88% of the spring chinook, 67% of the summer chinook, and 42% of the Bright fall chinook salmon population. Five-year-old fish (BY 1996) comprised 9% of the spring chinook, 14% of the summer chinook, and 9% of the fall chinook salmon population. The sockeye salmon population at Bonneville was predominantly four-year-old fish (81%), with 18% returning as five-year-olds in 2001. The coho salmon population was 96% three-year-old fish (Age 1.1). Length analysis of the 2001 returns indicated that chinook salmon with a stream-type life history are larger (mean length) than the chinook salmon with an ocean-type life history. Trends in mean length over the sampling period for returning 2001 chinook salmon were analyzed. Chinook salmon of age classes 0.2 and 1.3 show a significant increase in mean length over time. Age classes 0.1, 0.3, 0.4, 1.1, 1.2, and 1.4 show no significant change over time. A year class regression over the past 12 years of data was used to predict spring, summer, and Bright fall chinook salmon population sizes for 2002. Based on three-year-old returns, the relationship predicts four-year-old returns of 132,600 (± 46,300, 90% predictive interval [PI]) spring chinook and 44,200 (± 11,700, 90% PI) summer chinook salmon for the 2002 runs. Based on four-year-old returns, the relationship predicts five-year-old returns of 87,800 (± 54,500, 90% PI) spring, 33,500 (± 11,500, 90% PI) summer, and 77,100 (± 25,800, 90% PI) Bright fall chinook salmon for the 2002 runs. The 2002 run size predictions should be used with caution; some of these predictions are well beyond the range of previously observed data.
Resumo:
In 2000, representative samples of adult Columbia Basin chinook (Oncorhynchus tshawytscha), sockeye (O. nerka), and coho salmon (O. kisutch), populations were collected at Bonneville Dam. Fish were trapped, anesthetized, sampled for scales and biological data, allowed to revive, and then released. Scales were examined to estimate age composition and the results contribute to an ongoing database for age class structure of Columbia Basin salmon populations. Based on scale analysis, four-year-old fish (from brood year (BY) 1996) were estimated to comprise 83% of the spring chinook, 31% of the summer chinook, and 32% of the upriver bright fall chinook salmon population. Five-year-old fish (BY 1995) were estimated to comprise 2% of the spring chinook, 26% of the summer chinook, and 40% of the fall chinook salmon population. Three-year-old fish (BY 1997) were estimated to comprise 14% of the spring chinook, 42% of the summer chinook, and 17% of the fall chinook salmon population. Two-year-olds accounted for approximately 11% of the fall chinook population. The sockeye salmon population sampled at Bonneville was predominantly four-year-old fish (95%), and the coho salmon population was 99.9% three-year-old fish (Age 1.1). Length analysis of the 2000 returns indicated that chinook salmon with a stream-type life history are larger (mean length) than the chinook salmon with an ocean-type life history. Trends in mean length over the sampling period were also analysis for returning 2000 chinook salmon. Fish of age classes 0.2, 1.1, 1.2, and 1.3 have a significant increase in mean length over time. Age classes 0.3 and 0.4 have no significant change over time and age 0.1 chinook salmon had a significant decrease in mean length over time. A year class regression over the past 11 years of data was used to predict spring and summer chinook salmon population sizes for 2001. Based on three-year-old returns, the relationship predicts four-year-old returns of 325,000 (± 111,600, 90% Predictive Interval [PI]) spring chinook and 27,800 (± 29,750, 90% PI) summer chinook salmon. Based on four-year-old returns, the relationship predicts five-year-old returns of 54,300 (± 40,600, 90% PI) spring chinook and 11,000 (± 3,250, 90% PI) summer chinook salmon. The 2001 run size predictions used in this report should be used with caution, these predictions are well beyond the range of previously observed data.
Resumo:
In 2002, representative samples of migrating Columbia Basin chinook (Oncorhynchus tshawytscha), sockeye (O. nerka), and coho salmon (O. kisutch) adult populations were collected at Bonneville Dam. Fish were trapped, anesthetized, sampled for scales and biological data, revived, and then released. Scales were examined to estimate age composition; the results contributed to an ongoing database for age class structure of Columbia Basin salmon populations. Based on scale analysis of chinook salmon, four-year-old fish (from brood year [BY] 1998) comprised 86% of the spring chinook, 51% of the summer chinook, and 51% of the bright fall chinook salmon population. Five-year-old fish (BY 1997) comprised 13% of the spring chinook, 43% of the summer chinook, and 11% of the bright fall chinook salmon population. The sockeye salmon population at Bonneville was predominantly five-year-old fish (55%), with 40% returning as four-year-olds in 2002. For the coho salmon population, 88% of the population was three-year-old fish of age class 1.1, while 12% were age class 1.0. Length analysis of the 2002 returns indicated that chinook salmon with a stream-type life history are larger (mean length) at age than the chinook salmon with an ocean-type life history. Trends in mean length over the sampling period for returning 2002 chinook salmon were analyzed. Chinook salmon of age classes 1.2 and 1.3 show a significant increase in mean length over the duration of the migration. A year class regression over the past 14 years of data was used to predict spring, summer, and bright fall chinook salmon population sizes for 2003. Based on three-year-old returns, the relationship predicts four-year-old returns of 54,200 (± 66,600, 90% predictive interval [PI]) spring chinook, 23,800 (± 19,100, 90% PI) summer, and 169,100 (± 139,500, 90% PI) bright fall chinook salmon for the 2003 runs. Based on four-year-old returns, the relationship predicts five-year-old returns of 36,300 (± 35,400, 90% PI) spring, 63,800 (± 10,300, 90% PI) summer, and 91,100 (± 69,400, 90% PI) bright fall chinook salmon for the 2003 runs. The 2003 run size predictions should be used with caution; some of these predictions are well beyond the range of previously observed data.