113 resultados para Use of territory


Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the use of a baited stereo-video camera system, this study semiquantitatively defined the habitat associations of 4 species of Lutjanidae: Opakapaka (Pristipomoides filamentosus), Kalekale (P. sieboldii), Onaga (Etelis coruscans), and Ehu (E. carbunculus). Fish abundance and length data from 6 locations in the main Hawaiian Islands were evaluated for species-specific and size-specific differences between regions and habitat types. Multibeam bathymetry and backscatter were used to classify habitats into 4 types on the basis of substrate (hard or soft) and slope (high or low). Depth was a major influence on bottomfish distributions. Opakapaka occurred at depths shallower than the depths at which other species were observed, and this species showed an ontogenetic shift to deeper water with increasing size. Opakapaka and Ehu had an overall preference for hard substrate with low slope (hard-low), and Onaga was found over both hard-low and hard-high habitats. No significant habitat preferences were recorded for Kalekale. Opakapaka, Kalekale, and Onaga exhibited size-related shifts with habitat type. A move into hard-high environments with increasing size was evident for Opakapaka and Kalekale. Onaga was seen predominantly in hard-low habitats at smaller sizes and in either hard-low or hard-high at larger sizes. These ontogenetic habitat shifts could be driven by reproductive triggers because they roughly coincided with the length at sexual maturity of each species. However, further studies are required to determine causality. No ontogenetic shifts were seen for Ehu, but only a limited number of juveniles were observed. Regional variations in abundance and length were also found and could be related to fishing pressure or large-scale habitat features.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study showed that large prefabricated units and concrete rubble patch reefs, placed as artificial marine habitats on sand bottom, greatly enhance the abundance, diversity, and biomass of fish in an area. Densities of individuals and biomass were found considerably higher at artificial reefs than at nearby, natural, bank reefs, a result consistent with other studies. Location, depth, and vertical profile are important factors determining fish assemblages at artificial habitats in the Keys. Fishes were both produced at artificial reefs and attracted from the surrounding area. Fish assemblages at the Hawk Channel artificial reefs were considerably different from those on the offshore reef tract, particularly in terms of dominant species. Rescue of the original 1992 work in 2005 was funded by the South Florida Ecosystem Restoration Prediction and Modeling Program.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although growth rate and age data are essential for leatherback management, estimates of these demographic parameters remain speculative due to the cryptic life history of this endangered species. Skeletochronological analysis of scleral ossicles obtained from 8 captive, known-age and 33 wild leatherbacks originating from the western North Atlantic was conducted to characterize the ossicles and the growth marks within them. Ages were accurately estimated for the known-age turtles, and their growth mark attributes were used to calibrate growth mark counts for the ossicles from wild specimens. Due to growth mark compaction and resorption, the number of marks visible at ossicle section tips was consistently and significantly greater than the number visible along the lateral edges, demonstrating that growth mark counts should be performed at the tips so that age is not underestimated. A correction factor protocol that incorporated the trajectory of early growth increments was used to estimate the number of missing marks in those ossicles exhibiting resorption, which was then added to the number of observed marks to obtain an age estimate for each turtle. A generalized smoothing spline model, von Bertalanffy growth curve, and size-at-age function were used to obtain estimates of age at maturity for leatherbacks in the western North Atlantic. Results of these analyses suggest that median age at maturation for leatherbacks in this part of the world may range from 24.5 to 29 yr. These age estimates are much greater than those proposed in previous studies and have significant implications for population management and recovery.