100 resultados para Structure en couches
Resumo:
Long-term sustainable management of wild populations should be based on management actions that account for the genetic structure among populations. Knowledge of genetic structure and of the degree of demographic exchange between discreet [sic] populations allows managers to better define management units. However, adequate gene loci for population assessments are not always available. In this study, variable co-dominant DNA loci in the heavily exploited marine genus Brevoortia were developed with a microsatellite-enriched DNA library for the Gulf Menhaden (Brevoortia patronus). Microsatellite marker discovery was followed by genetic characterization of 4 endemic North American Brevoortia species, by using 14 novel loci as well as 5 previously described loci. Power analysis of these loci for use in species identification and genetic stock structure was used to assess their potential to improve the stock definition in the menhaden fishery of the Gulf of Mexico. These loci could be used to reliably identify menhaden species in the Gulf of Mexico with an estimated error rate of α=0.0001. Similarly, a power analysis completed on the basis of observed allele frequencies in Gulf Menhaden indicated that these markers can be used to detect very small levels of genetic divergence (Fst≈0.004) among simulated populations, with sample sizes as small as n=50 individuals. A cursory analysis of genetic structure among Gulf Menhaden sampled throughout the Gulf of Mexico indicated limited genetic structure among sampling locations, although the available sampling did not reach the target number (n=50) necessary to detect minimal values of significant structure.
Resumo:
Spatial pattern metrics have routinely been applied to characterize and quantify structural features of terrestrial landscapes and have demonstrated great utility in landscape ecology and conservation planning. The important role of spatial structure in ecology and management is now commonly recognized, and recent advances in marine remote sensing technology have facilitated the application of spatial pattern metrics to the marine environment. However, it is not yet clear whether concepts, metrics, and statistical techniques developed for terrestrial ecosystems are relevant for marine species and seascapes. To address this gap in our knowledge, we reviewed, synthesized, and evaluated the utility and application of spatial pattern metrics in the marine science literature over the past 30 yr (1980 to 2010). In total, 23 studies characterized seascape structure, of which 17 quantified spatial patterns using a 2-dimensional patch-mosaic model and 5 used a continuously varying 3-dimensional surface model. Most seascape studies followed terrestrial-based studies in their search for ecological patterns and applied or modified existing metrics. Only 1 truly unique metric was found (hydrodynamic aperture applied to Pacific atolls). While there are still relatively few studies using spatial pattern metrics in the marine environment, they have suffered from similar misuse as reported for terrestrial studies, such as the lack of a priori considerations or the problem of collinearity between metrics. Spatial pattern metrics offer great potential for ecological research and environmental management in marine systems, and future studies should focus on (1) the dynamic boundary between the land and sea; (2) quantifying 3-dimensional spatial patterns; and (3) assessing and monitoring seascape change.