143 resultados para Rawls, Jesse, Jr.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The gray snapper (Lutjanus griseus) is a temperate and tropical reef fish that is found along the Gulf of Mexico and Atlantic coasts of the southeastern United States. The recreational fishery for gray snapper has developed rapidly in south Louisiana with the advent of harvest and seasonal restrictions on the established red snapper (L. campechanus) fishery. We examined the age and growth of gray snapper in Louisiana with the use of cross-sectioned sagittae. A total of 833 specimens, (441 males, 387 females, and 5 of unknown sex) were opportunistically sampled from the recreational fishery from August 1998 to August 2002. Males ranged in size from 222 to 732 mm total length (TL) and from 280 g to 5700 g total weight (TW) and females ranged from 254 to 756 mm TL and from 340 g to 5800 g TW. Both edge analysis and bomb radiocarbon analyses were used to validate otolith-based age estimates. Ages were estimated for 718 individuals; both males and females ranged from 1 to 28 years. The von Bertalanffy growth models derived from TL at age were Lt = 655.4{1–e[–0.23(t)]} for males, Lt = 657.3{1–e[– 0.21(t)]} for females, and L t = 656.4{1–e[– 0.22 (t)]} for all specimens of known sex. Catch curves were used to produce a total mortality (Z) estimate of 0.17. Estimates of M calculated with various methods ranged from 0.15 to 0.50; however we felt that M= 0.15 was the most appropriate estimate based on our estimate of Z. Full recruitment to the gray snapper recreational fishery began at age 4, was completed by age 8, and there was no discernible peak in the catch curve dome.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this note we describe the re-formation of a spawning aggregation of mutton snapper (Lutjanus analis). A review of four consecutive years of survey data indicates that the aggregation may be increasing in size. Mutton snapper are distributed in the temperate and tropical waters of the western Atlantic Ocean from Florida to southeastern Brazil (Burton, 2002). Juveniles and subadults are found in a variety of habitats such as vegetated sand bottoms, bays, and mangrove estuaries (Allen, 1985). Adults are found offshore on coral reefs and other complex hardbottom habitat. They are solitary and wary fish, rarely found in groups or schools except during spawning aggregations (Domeier et al., 1996). Spawning occurs from May through July at Riley’s Hump (Domeier et al., 1996) and peaks in June, as indicated by gonadosomatic indices (M. Burton, unpubl. data). Mutton snapper are highly prized by Florida fishermen for their size and fighting ability, and the majority of landings occur from Cape Canaveral, through the Florida Keys, including the Dry Tortugas (Burton, 2002).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In 1948, the U.S.S.R. began a global campaign of illegal whaling that lasted for three decades and, together with the poorly managed “legal” whaling of other nations, seriously depleted whale populations. Although the general story of this whaling has been told and the catch record largely corrected for the Southern Hemisphere, major gaps remain in the North Pacific. Furthermore, little attention has been paid to the details of this system or its economic context. Using interviews with former Soviet whalers and biologists as well as previously unavailable reports and other material in Russian, our objective is to describe how the Soviet whaling industry was structured and how it worked, from the largest scale of state industrial planning down to the daily details of the ways in which whales were caught and processed, and how data sent to the Bureau of International Whaling Statistics were falsified. Soviet whaling began with the factory ship Aleut in 1933, but by 1963 the industry had a truly global reach, with seven factory fleets (some very large). Catches were driven by a state planning system that set annual production targets. The system gave bonuses and honors only when these were met or exceeded, and it frequently increased the following year’s targets to match the previous year’s production; scientific estimates of the sustainability of the resource were largely ignored. Inevitably, this system led to whale populations being rapidly reduced. Furthermore, productivity was measured in gross output (weights of whales caught), regardless of whether carcasses were sound or rotten, or whether much of the animal was unutilized. Whaling fleets employed numerous people, including women (in one case as the captain of a catcher boat). Because of relatively high salaries and the potential for bonuses, positions in the whaling industry were much sought-after. Catching and processing of whales was highly mechanized and became increasingly efficient as the industry gained more experience. In a single day, the largest factory ships could process up to 200 small sperm whales, Physeter macrocephalus; 100 humpback whales, Megaptera novaeangliae; or 30–35 pygmy blue whales, Balaenoptera musculus brevicauda. However, processing of many animals involved nothing more than stripping the carcass of blubber and then discarding the rest. Until 1952, the main product was whale oil; only later was baleen whale meat regularly utilized. Falsified data on catches were routinely submitted to the Bureau of International Whaling Statistics, but the true catch and biological data were preserved for research and administrative purposes. National inspectors were present at most times, but, with occasional exceptions, they worked primarily to assist fulfillment of plan targets and routinely ignored the illegal nature of many catches. In all, during 40 years of whaling in the Antarctic, the U.S.S.R. reported 185,778 whales taken but at least 338,336 were actually killed. Data for the North Pacific are currently incomplete, but from provisional data we estimate that at least 30,000 whales were killed illegally in this ocean. Overall, we judge that, worldwide, the U.S.S.R. killed approximately 180,000 whales illegally and caused a number of population crashes. Finally, we note that Soviet illegal catches continued after 1972 despite the presence of international observers on factory fleets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Size distribution within re- ported landings is an important aspect of northern Gulf of Mexico penaeid shrimp stock assessments. It reflects shrimp population characteristics such as numerical abundance of various sizes, age structure, and vital rates (e.g. recruitment, growth, and mortality), as well as effects of fishing, fishing power, fishing practices, sampling, size-grading, etc. The usual measure of shrimp size in archived landings data is count (C) the number of shrimp tails (abdomen or edible portion) per pound (0.4536 kg). Shrimp are marketed and landings reported in pounds within tail count categories. Statistically, these count categories are count class intervals or bins with upper and lower limits expressed in C. Count categories vary in width, overlap, and frequency of occurrence within the landings. The upper and lower limits of most count class intervals can be transformed to lower and upper limits (respectively) of class intervals expressed in pounds per shrimp tail, w, the reciprocal of C (i.e. w = 1/C). Age based stock assessments have relied on various algorithms to estimate numbers of shrimp from pounds landed within count categories. These algorithms required un- derlying explicit or implicit assumptions about the distribution of C or w. However, no attempts were made to assess the actual distribution of C or w. Therefore, validity of the algorithms and assumptions could not be determined. When different algorithms were applied to landings within the same size categories, they produced different estimates of numbers of shrimp. This paper demonstrates a method of simulating the distribution of w in reported biological year landings of shrimp. We used, as examples, landings of brown shrimp, Farfantepenaeus aztecus, from the northern Gulf of Mexico fishery in biological years 1986–2006. Brown shrimp biological year, Ti, is defined as beginning on 1 May of the same calendar year as Ti and ending on 30 April of the next calendar year, where subscript i is the place marker for biological year. Biological year landings encompass most if not all of the brown shrimp life cycle and life span. Simulated distributions of w reflect all factors influencing sizes of brown shrimp in the landings within a given biological year. Our method does not require a priori assumptions about the parent distributions of w or C, and it takes into account the variability in width, overlap, and frequency of occurrence of count categories within the landings. Simulated biological year distributions of w can be transformed to equivalent distributions of C. Our method may be useful in future testing of previously applied algorithms and development of new estimators based on statistical estimation theory and the underlying distribution of w or C. We also examine some applications of biological year distributions of w, and additional variables derived from them.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Satellite telemetry is a common tool for examining sea turtle movements, and many research programs have successfully tracked adults. Relatively short satellite track durations recorded for juvenile Kemp’s ridley sea turtles, Lepidochelys kempii, in the northwestern Gulf of Mexico raised questions regarding premature transmission loss. We examined interactions between juvenile sea turtles outfitted with platform terminal transmitters (PTT’s) and turtle excluder devices (TED’s) and the potential for transmission loss due to this interaction. A pilot study was conducted with eight 34-month-old, captive-reared loggerhead sea turtles, Caretta caretta; a larger trial the following year used twenty 34-month-olds. Half of the turtles in each trial were outfitted with dummy PTT’s (8×4×2 cm), and all turtles were sent through a trawl equipped with a bottom-opening Super-Shooter TED. No apparent damage was sustained by any PTT, but four of five PTT-outfitted loggerheads encountering the TED carapace-first exhibited increased escape times when the PTT wedged between the TED deflector bars (10.2 cm apart). Overall, 15 loggerheads (54%) impacted the TED carapace-first. Attachment of PTT’s to smaller sea turtles may slow or, in worst cases, inhibit escape from TED’s. Likewise, loose or poorly secured PTT’s could impede escape or be shed during such an interaction. Researchers tracking small turtles in or near regions with trawling activity should consider PTT size and shape and the combined PTT/adhesive profile to minimize potentially detrimental interactions with TED’s.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent decades, hatchery-growout culture of oysters, Crassostrea virginica, and northern quahogs, Mercenaria mercenaria, has been commercially successful in Atlantic United States and oysters in Atlantic Canada. Culturists have not had success, as yet, with northern bay scallops, Argopecten irradians irradians. Large mortalities occur during the culture process, mainly because the scallops are relatively delicate and some die when handled. In addition, too little edible meat, i.e. the adductor muscle, is produced for the culture operation to be profitable. However, three companies, one in Massachusetts, one in New Brunswick, and one on Prince Edward Island, Canada, have discovered that they can produce bay scallops successfully by harvesting them when partially-to fully-grown and selling them whole. In restaurants, the scallops are cooked and served with all their meats (adductor muscles and rims) and also with the shells, which have been genetically-bred for bright colors. The scallop seed are produced in hatcheries and then grown in lantern or pearl nets and cages to market size. Thus far, production has been relatively small, just beyond the pilot-scale, until a larger demand develops for this product.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

From 1947 to 1973, the U.S.S.R. conducted a huge campaign of illegal whaling worldwide. We review Soviet catches of humpback whales, Megaptera novaeangliae, in the Southern Ocean during this period, with an emphasis on the International Whaling Commission’s Antarctic Management Areas IV, V, and VI (the principal regions of illegal Soviet whaling on this species, south of Australia and western Oceania). Where possible, we summarize legal and illegal Soviet catches by year, Management Area, and factory fleet, and also include information on takes by other nations. Soviet humpback catches between 1947 and 1973 totaled 48,702 and break down as follows: 649 (Area I), 1,412 (Area II), 921 (Area III), 8,779 (Area IV), 22,569 (Area V), and 7,195 (Area VI), with 7,177 catches not currently assignable to area. In all, at least 72,542 humpback whales were killed by all operations (Soviet plus other nations) after World War II in Areas IV (27,201), V (38,146), and VI (7,195). More than one-third of these (25,474 whales, of which 25,192 came from Areas V and VI) were taken in just two seasons, 1959–60 and 1960–61. The impact of these takes, and of those from Area IV in the late 1950’s, is evident in the sometimes dramatic declines in catches at shore stations in Australia, New Zealand, and at Norfolk Island. When compared to recent estimates of abundance and initial population size, the large removals from Areas IV and V indicate that the populations in these regions remain well below pre-exploitation levels despite reported strong growth rates off eastern and western Australia. Populations in many areas of Oceania continue to be small, indicating that the catches from Area VI and eastern Area V had long-term impacts on recovery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This is a broad historical overview of the bay scallop, Argopecten irradians, fishery on the East and Gulf Coasts of North America (Fig. 1). For a little over a century, from about the mid 1870’s to the mid 1980’s, bay scallops supported large commercial fisheries mainly in the U.S. states of Massachusetts, New York, and North Carolina and on smaller scales in the states in between and in western Florida. In these states, the annual harvests and dollar value of bay scallops were far smaller than those of the other important commercial mollusks, the eastern oysters, Crassostrea virginica, and northern quahogs, Mercenaria mercenaria, but they were higher than those of softshell clams, Mya arenaria (Table 1). The fishery had considerable economic importance in the states’ coastal towns, because bay scallops are a high-value product and the fishery was active during the winter months when the economies in most towns were otherwise slow. The scallops also had cultural importance as a special food, an ornament owing to its pretty shell design, and an interesting biological component of

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article covers the biology and the history of the bay scallop habitats and fishery from Massachusetts to North Carolina. The scallop species that ranges from Massachusetts to New York is Argopecten irradians irradians. In New Jersey, this species grades into A. i. concentricus, which then ranges from Maryland though North Carolina. Bay scallops inhabit broad, shallow bays usually containing eelgrass meadows, an important component in their habitat. Eelgrass appears to be a factor in the production of scallop larvae and also the protection of juveniles, especially, from predation. Bay scallops spawn during the warm months and live for 18–30 months. Only two generations of scallops are present at any time. The abundances of each vary widely among bays and years. Scallops were harvested along with other mollusks on a small scale by Native Americans. During most of the 1800’s, people of European descent gathered them at wading depths or from beaches where storms had washed them ashore. Scallop shells were also and continue to be commonly used in ornaments. Some fishing for bay scallops began in the 1850’s and 1860’s, when the A-frame dredge became available and markets were being developed for the large, white, tasty scallop adductor muscles, and by the 1870’s commercial-scale fishing was underway. This has always been a cold-season fishery: scallops achieve full size by late fall, and the eyes or hearts (adductor muscles) remain preserved in the cold weather while enroute by trains and trucks to city markets. The first boats used were sailing catboats and sloops in New England and New York. To a lesser extent, scallops probably were also harvested by using push nets, picking them up with scoop nets, and anchor-roading. In the 1910’s and 1920’s, the sails on catboats were replaced with gasoline engines. By the mid 1940’s, outboard motors became more available and with them the numbers of fishermen increased. The increases consisted of parttimers who took leaves of 2–4 weeks from their regular jobs to earn extra money. In the years when scallops were abundant on local beds, the fishery employed as many as 10–50% of the towns’ workforces for a month or two. As scallops are a higher-priced commodity, the fishery could bring a substantial amount of money into the local economies. Massachusetts was the leading state in scallop landings. In the early 1980’s, its annual landings averaged about 190,000 bu/yr, while New York and North Carolina each landed about 45,000 bu/yr. Landings in the other states in earlier years were much smaller than in these three states. Bay scallop landings from Massachusetts to New York have fallen sharply since 1985, when a picoplankton, termed “brown tide,” bloomed densely and killed most scallops as well as extensive meadows of eelgrass. The landings have remained low, large meadows of eelgrass have declined in size, apparently the species of phytoplankton the scallops use as food has changed in composition and in seasonal abundance, and the abundances of predators have increased. The North Carolina landings have fallen since cownose rays, Rhinoptera bonsais, became abundant and consumed most scallops every year before the fishermen could harvest them. The only areas where the scallop fishery remains consistently viable, though smaller by 60–70%, are Martha’s Vineyard, Nantucket, Mass., and inside the coastal inlets in southwestern Long Island, N.Y.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mats (biomasses) of macroalgae, i.e. Ulva spp., Enteromorpha spp., Graciolaria spp., and Cladophora spp., have increased markedly over the past 50 years, and they cover much larger areas than they once did in many estuaries of the world. The increases are due to large inputs of pollutants, mainly nitrates. During the warm months, the mats lie loosely on shallow sand and mud flats mostly along shorelines. Ulva lactuca overwinters as buds attached to shells and stones, and in the spring it grows as thalli (leaf fronds). Mats eventually form that are several thalli thick. Few macroinvertebrates grow on the upper surfaces of their thalli due to toxins they produce, and few can survive beneath them. The fish, crabs, and wading birds that once used the flats to feed on the macroinvertebrates are denied these feeding grounds. The mats also grow over and kill mollusks and eelgrass, Zostera marina. An experiment was undertaken which showed that two removals of U. lactuca in a summer from a shallow flat in an estuarine cove maintained the bottom almost free of it.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rangia and marsh clams, Rangia cuneata, R. flexuosa, and Polymesoda caroliniana, occur in brackish waters along México’s eastern coast from the northern State of Tamaulipas to the southern State of Campeche. The clams were important to the prehispanic people in the southern part of the State of Veracruz, where they were used as food and as construction material. In modern times, they are harvested for food. The fishermen wade in shallow water and harvest the clams in soft sediments by hand. Annual landings of whole clams during a recent 5-yr period, 1998–2002, were 1,139–1,695 t. The only area with a substantial ongoing clam fishery is in the Lower Papaloapan River Basin, including Alvarado Lagoon, where as many as 450 fishermen are licensed harvesters. This fishery for the Rangia and marsh clams is the most important clam fishery along México’s Gulf Coast.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the 1500’s, the waters of Venezuela and to a lesser extent Colombia produced more natural pearls than any place ever produced in the world in any succeeding century. Atlantic pearl-oysters, Pinctata imbricata Röding 1798, were harvested almost entirely by divers. The pearls from them were exported to Spain and other European countries. By the end of the 1500’s, the pearl oysters had become much scarcer, and little harvesting took place during the 1600’s and 1700’s. Harvesting began to accelerate slowly in the mid 1800’s and has since continued but at a much lower rate than in the 1500’s. The harvesting methods have been hand collecting by divers until the early 1960’s, dredging from the 1500’s to the present, and hardhat diving from 1912 to the early 1960’s. Since the mid 1900’s, Japan and other countries of the western Pacific rim have inundated world markets with cultured pearls that are of better quality and are cheaper than natural pearls, and the marketing of natural pearls has nearly ended. The pearl oyster fishery in Colombia ended in the 1940’s, but it has continued in Venezuela with the fishermen selling the meats to support themselves; previously most meats had been discarded. A small quantity of pearls is now taken, and the fishery, which comprised about 3,000 fishermen in 1947, comprised about 300 in 2002.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The northern quahog, Mercenaria mercenaria, ranges along the Atlantic Coast of North America from the Canadian Maritimes to Florida, while the southern quahog, M. campechiensis, ranges mostly from Florida to southern Mexico. The northern quahog was fished by native North Americans during prehistoric periods. They used the meats as food and the shells as scrapers and as utensils. The European colonists copied the Indians treading method, and they also used short rakes for harvesting quahogs. The Indians of southern New England and Long Island, N.Y., made wampum from quahog shells, used it for ornaments and sold it to the colonists, who, in turn, traded it to other Indians for furs. During the late 1600’s, 1700’s, and 1800’s, wampum was made in small factories for eventual trading with Indians farther west for furs. The quahoging industry has provided people in many coastal communities with a means of earning a livelihood and has given consumers a tasty, wholesome food whether eaten raw, steamed, cooked in chowders, or as stuffed quahogs. More than a dozen methods and types of gear have been used in the last two centuries for harvesting quahogs. They include treading and using various types of rakes and dredges, both of which have undergone continuous improvements in design. Modern dredges are equipped with hydraulic jets and one type has an escalator to bring the quahogs continuously to the boats. In the early 1900’s, most provinces and states established regulations to conserve and maximize yields of their quahog stocks. They include a minimum size, now almost universally a 38-mm shell width, and can include gear limitations and daily quotas. The United States produces far more quahogs than either Canada or Mexico. The leading producer in Canada is Prince Edward Island. In the United States, New York, New Jersey, and Rhode Island lead in quahog production in the north, while Virginia and North Carolina lead in the south. Connecticut and Florida were large producers in the 1990’s. The State of Tabasco leads in Mexican production. In the northeastern United States, the bays with large openings, and thus large exchanges of bay waters with ocean waters, have much larger stocks of quahogs and fisheries than bays with small openings and water exchanges. Quahog stocks in certified beds have been enhanced by transplanting stocks to them from stocks in uncertified waters and by planting seed grown in hatcheries, which grew in number from Massachusetts to Florida in the 1980’s and 1990’s.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The northern quahog, Mercenaria mercenaria, ranges along the Atlantic Coast of North America from the Canadian Maritimes to Florida, while the southern quahog, M. campechiensis, ranges mostly from Florida to southern Mexico. The northern quahog was fished by native North Americans during prehistoric periods. They used the meats as food and the shells as scrapers and as utensils. The European colonists copied the Indians treading method, and they also used short rakes for harvesting quahogs. The Indians of southern New England made wampum from quahog shells, used it for ornaments and sold it to the colonists, who, in turn, traded it to other Indians for furs. During the late 1600’s, 1700’s, and 1800’s, wampum was made in small factories for eventual trading with Indians farther west for furs. The quahoging industry has provided people in many coastal communities with a means of earning a livelihood and has provided consumers with a tasty, wholesome food whether eaten raw, steamed, cooked in chowders, or as stuffed quahogs. More than a dozen methods and types of gear have been used in the last two centuries for harvesting quahogs. They include treading and using various types of rakes and dredges, both of which have undergone continuous improvements in design. Modern dredges are equipped with hydraulic jets and one type has an escalator to bring the quahogs continuously to the boats. In the early 1900’s, most provinces and states established regulations to conserve and maximize yields of their quahog stocks. They include a minimum size, now almost universally a 38-mm shell width, and can include gear limitations and daily quotas. The United States produces far more quahogs than either Canada or Mexico. The leading producer in Canada is Prince Edward Island. In the United States, New York, New Jersey, and Rhode Island lead in quahog production in the north, while Virginia and North Carolina lead in the south. Connecticut and Florida were large producers in the 1990’s. The State of Campeche leads in Mexican production. In the northeastern United States, the bays with large openings, and thus large exchanges of bay waters with ocean waters, have much larger stocks of quahogs and fisheries than bays with small openings and water exchanges. Quahog stocks in certifi ed beds have been enhanced by transplanting stocks to them from stocks in uncertified waters and by planting seed grown in hatcheries, which grew in number from Massachusetts to Florida in the 1980’s and 1990’s.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper provides the first description of the mangrove cockle, Anadara spp., fisheries throughout their Latin American range along the Pacific coast from Mexico to Peru. Two species, A. tuberculosa and A. grandis, are found over the entire range, while A. similis occurs from El Salvador to Peru. Anadara tuberculosa is by far the most abundant, while A. grandis has declined in abundance during recent decades. Anadara tuberculosa and A. similis occur in level mud sediments in mangrove swamps, comprised mostly of Rhizophora mangle, which line the main-lands and islands of lagoons, whereas A. grandis inhabits intertidal mud flats along the edges of the same mangrove swamps. All harvested cockles are sexually mature. Gametogenesis of the three species occurs year round, and juvenile cockles grow rap-idly. Cockle densities at sizes at least 16–42 mm long ranged from 7 to 24/m2 in Mexico. Macrofaunal associates of cockles include crustaceans, gastropods, and finfishes. The mangrove swamps are in nearly pristine condition in every country except Honduras, Ecuador, and Peru, where shrimp farms constructed in the 1980’s and 1990’s have destroyed some mangrove zones. In addition, Hurricane Mitch destroyed some Honduran mangrove swamps in 1998. About 15,000 fishermen, including men, women, and children, harvest the cockles. Ecuador has the largest tabulated number of fishermen, 5,055, while Peru has the fewest, 75. Colombia has a large number, perhaps exceeding that in Ecuador, but a detailed census of them has never been made. The fishermen are poor and live a meager existence; they do not earn sufficient money to purchase adequate food to allow their full health and growth potential. They travel almost daily from their villages to the harvesting areas in wooden canoes and fiberglass boats at low tide when they can walk into the mangrove swamps to harvest cockles for about 4 h. Harvest rates, which vary among countries owing to differences in cockle abundances, range from about 50 cockles/fisherman/day in El Salvador and Honduras to 500–1,000/ fisherman/day in Mexico. The fishermen return to their villages and sell the cockles to dealers, who sell them mainly whole to market outlets within their countries, but there is some exporting to adjacent countries. An important food in most countries, the cockles are eaten in seviche, raw on the half-shell, and cooked with rice. The cockles are under heavy harvesting pressure, except in Mexico, but stocks are not yet being depleted because they are harvested at sizes which have already spawned. Also some spawning stocks lie within dense mangrove stands which the fishermen cannot reach. Consumers fortunately desire the largest cockles, spurning the smallest. Cockles are important to the people, and efforts to reduce the harvests to prevent overfishing would lead to severe economic suffering in the fishing communities. Pro-grams to conserve and improve cockle habitats may be the most judicious actions to take. Preserving the mangrove swamps intact, increasing their sizes where possible, and controlling cockle predators would lead to an increase in cockle abundance and harvests. Fishes that prey on juvenile cockles might be seined along the edges of swamps before the tide rises and they swim into the swamps to feed. Transplanting mangrove seedlings to suitable areas might increase the size of those habitats. The numbers of fishermen may increase in the future, because most adults now have several children. If new fishermen are tempted to harvest small, immature cockles and stocks are not increased, minimum size rules for harvestable cockles could be implemented and enforced to ensure adequate spawning.