104 resultados para RESERVOIR OPERATION
Resumo:
Perhaps the most difficult job of the ecotoxicologist is extrapolating data calculated from laboratory experiments with high precision and accuracy into the real world of highly-dynamics aquatic environments. The establishment of baseline laboratory toxicity testing data for individual compounds and ecologically important and field studies serve as a precursor to ecosystem level studies needed for ecological risk assessment. The first stage in the field portion of risk assessment is the determination of actual environmental concentrations of the contaminant being studied and matching those concentrations with laboratory toxicity tests. Risk estimates can be produced via risk quotients that would determine the probability that adverse effects may occur. In this first stage of risk assessment, environmental realism is often not achieved. This is due, in part, to the fact that single-species laboratory toxicity tests, while highly controlled, do not account for the complex interactions (Chemical, physical, and biological) that take place in the natural environment. By controlling as many variables in the laboratory as possible, an experiment can be produced in such a fashion that real effects from a compound can be determined for a particular test organism. This type of approach obviously makes comparison with real world data most difficult. Conversely, field oriented studies fall short in the interpretation of ecological risk assessment because of low statistical power, lack of adequate replicaiton, and the enormous amount of time and money needed to perform such studies. Unlike a controlled laboratory bioassay, many other stressors other than the chemical compound in question affect organisms in the environment. These stressors range from natural occurrences (such as changes in temperature, salinity, and community interactions) to other confounding anthropogenic inputs. Therefore, an improved aquatic toxicity test that will enhance environmental realism and increase the accuracy of future ecotoxicological risk assessments is needed.
Resumo:
Moving ecosystem modeling from research to applications and operations has direct management relevance and will be integral to achieving the water quality and living resource goals of the 2010 Chesapeake Bay Executive Order. Yet despite decades of ecosystem modeling efforts of linking climate to water quality, plankton and fish, ecological models are rarely taken to the operational phase. In an effort to promote operational ecosystem modeling and ecological forecasting in Chesapeake Bay, a meeting was convened on this topic at the 2010 Chesapeake Modeling Symposium (May, 10-11). These presentations show that tremendous progress has been made over the last five years toward the development of operational ecological forecasting models, and that efforts in Chesapeake Bay are leading the way nationally. Ecological forecasts predict the impacts of chemical, biological, and physical changes on ecosystems, ecosystem components, and people. They have great potential to educate and inform not only ecosystem management, but also the outlook and opinion of the general public, for whom we manage coastal ecosystems. In the context of the Chesapeake Bay Executive Order, ecological forecasting can be used to identify favorable restoration sites, predict which sites and species will be viable under various climate scenarios, and predict the impact of a restoration project on water quality.
Resumo:
Principles adopted by China for the development of reservoir fisheries are discussed. Production of some of reservoirs of China with that of India is compared. The reasons for obtaining higher production in China have been recognised as: emphasis on utilization of all resources for food production; direct feeding; use of selected varieties of fast growing carps; keeping 15 pigs per hectare of water area for application of pig void and application of manure; production of fingerlings at the reservoir sites enclaving coves and bays; grading and removing obstructions from bottom; rational harvesting and stocking and improvement of reservoir shore areas as a whole. Some of these measures which could be implemented in Indian conditions are briefly described.
Resumo:
Following an account of factors influencing the biological productivity of reservoirs in India, details are given of energy transformation through primary production. An ecosystem approach to the management of reservoir fisheries is discussed, considering also socio-economic factors to be taken into account.
Resumo:
Matatilla Reservoir, located in semi arid region, (Lat. 25 degree 15'N and Long. 78 degree 23'E) has an area (at FRL) of 13,893 ha, volume and shore development 0.663 and 1.65, shoreline 73.6 km. Volume and shore development indicate that greater part of the reservoir is shallow, which is a favourable point for fish productivity. Temperature and dissolved oxygen gradually decreased with the increase in depth. Carbon dioxide was absent from the surface but invariably present in the bottom (3.6 ppm) pH remained alkaline (7.2-8.4 ppm) throughout the year. Alkalinity, chloride, calcium, magnesium, hardness and priductivity was maximum in pre-monsoon and minimum in monsoon except for calcium and manganesium in post-monsoon. Phosphate, nitrogen and ammonical nitrogen were found in traces. These variations may be due to influx and outflow of water and use of reservoir water for multipurpose activities.
Resumo:
Studies on small trawls seem to be comparatively less. These trawls are generally operated in shallower waters, where due to the limitations in the length of warp that could be released, size restrictions have to be considered for their efficient functioning. An attempt has been made to assess the effective scope-ratio of length of warp required for the operation of trawls at shallower depth and to a judge the size of trawl suitable for use at lower depths.
Resumo:
The comparative efficiencies of simple gill net, vertical line net and framed net in exploiting the fishery of Hirakud Reservoir in Orissa were studied. Though comparatively costlier to fabricate, the framed net gave better results than the other two.
Resumo:
The records of the exploitation of demersal fish resources by trawlers during the past two decades indicated a decline in productivity and uneconomical fishing operations. The possible reasons for the decline can be deduced by analysis of the fishing records of trawlers that have fished in the banks. Such an analysis can also provide a basis for planned management in the exploitation of demersal stocks of fish. This paper attempts to provide such a basis for the Wadge Bank.
Resumo:
The author gives a financial and economic valuation of the operation of vessels in the 38 foot GRP class. He discusses particularly the materials and methods of fishing they use, species composition of their catches, their rate of return, break-even analysis, financial and social analysis.