107 resultados para Partially protected areas
Resumo:
Establishment of a working group of regional experts in Marine Protected Areas (MPAs); inventory and status of existing MPAs; gap analysis;establishment of common data requirements and protocols;development of a regional action plan;training and capacity building; outreach activities; proposal f0r management of existing and creation of new MPAs.
Resumo:
The objectives of the workshop included: an overview of the biophysical characteristics of the Myeik Archipelago; strengthen understanding of Marine Protected Areas (MPAs) management to mitigate resource use conflicts; share lessons and experiences of MPA management from the Asia-Pacific region; and to identify a road map for developing MPA management in the Myeik Archipelago.
Resumo:
EXECUTIVE SUMMARY INTRODUCTION OVERVIEW OF INTERNATIONAL EBM HISTORY References CANADA Overview Activities to date Integrated Management implementation in Canada Objectives, indicators and reference points Assessment approaches Research directions for the future Management directions for the future References JAPAN Overview Conservation and sustainable use of marine living resources Harvest control by TAC system Stock Recovery Plan and effort regulation system Stock enhancement by hatchery-produced juvenile release Conservation and sustainable develop-ment on coastal waters The implementation of ecosystem-based management PEOPLE’S REPUBLIC OF CHINA Overview Current actions Output control Input control Summer fishing ban Enhance ecosystem health REPUBLIC OF KOREA Initiatives and actions of ecosystem-based management in Korea Current ecosystem-based management initiatives in Korea Precautionary TAC-based fishery management Closed fishing season/areas Fish size- and sex-controls Fishing gear design restrictions Marine protected areas (MPA) RUSSIA Existing and anticipated ecosystem-based management initiatives Issues related to the implementation of ecosystem-based management UNITED STATES OF AMERICA Definitions and approaches to ecosystem-based fishery management in the United States Present U.S. legislative mandates relating to ecosystem-based fishery management Target species Bycatch species Threatened or endangered species Habitats Food webs Ecosystems Integration of legislative mandates into an ecosystem approach Scientific issues in implementing ecosystem-based approaches References DISCUSSION AND RECOMMENDATIONS APPENDICES Appendix 10.1 Study group membership and participants Appendix 10.2 Terminology definitions Appendix 10.3 Present state of implementing ecosystem-based fishery management in Alaska: Alaska groundfish fisheries Appendix 10.4 Present state of implementing ecosystem-based fishery management off the West Coast of the United States: Pacific Coast groundfish fisheries Appendix 10.5 Descriptions of multi-species and ecosystem models developed or under development in the U.S. North Pacific region that might be used to predict effects of fishing on ecosystems Appendix 10.6 A potential standard reporting format (developed by Australia, and currently being used by the U.S.A in their contribution to this report) (83 page document)
Resumo:
Report: Rights-based fishing - Flagging rights, realizing responsibilities. Senegal: Artisanal fisheries - A health check. Analysis: Fuel prices - Fishing in times of high prices. Panama: Protected areas - Mother earth, mother sea. Review: Films - A restless, throbbing ballet. Norway: Fuel subsidies - Skimming the cream. India: Coastal Management - Save the coast, save the fishers. Report: Chile Workshop - Common concerns, lasting bonds. Indonesia: Fisheries Legislation - Ring of fire. Report: CBD COP9 - Breaking away from tradition. On Samudra Report At 50 – Supplement. (64 pp.)
Resumo:
Report: COFI Session-Securing small-scale fisheries; Statement-Contributing Significantly; Somalia: Pirate Fishing -Pirates or Saviours of the Coast?; Marine Protected Areas-Managing to Benefit; Mexico: Marine Reserves--Caught Up in Change; MPAs-Importance of Social Capital; MSC Ecolabels-Work Together for Community-based Fisheries; Netherlands: Inland Fisheries -A Management Fantasy?;Small Indigenous Species -Small is Nutritional; ICSF Resources- Information Updates
Resumo:
Understanding how well National Marine Sanctuaries and other marine protected areas represent the diversity of species present within and among the biogeographic regions where they occur is essential for assessing their conservation value and identifying gaps in the protection of biological diversity. One of the first steps in any such assessment should be the development of clearly defined and scientifically justified planning boundaries representing distinct oceanographic conditions and faunal assemblages. Here, we propose a set of boundaries for the continental shelf of northeastern North America defined by subdivisions of the Eastern Temperate Province, based on a review and synthesis (i.e. meta-analysis) of the scientific literature. According to this review, the Eastern Temperate Province is generally divided into the Acadian and Virginian Subprovinces. Broad agreement places the Scotian Shelf, Gulf of Maine, and Bay of Fundy within the Acadian Subprovince. The proper association of Georges Bank is less clear; some investigators consider it part of the Acadian and others part of the Virginian. Disparate perspectives emerge from the analysis of different groups of organisms. Further, while some studies suggest a distinction between the Southern New England shelf and the rest of the Mid-Atlantic Bight, others describe the region as a broad transition zone with no unique characteristics of its own. We suggest there exists sufficient evidence to consider the Scotian Shelf, Gulf of Maine, Georges Bank, Southern New England, and Southern Mid-Atlantic Bight as distinct biogeographic regions from a conservation planning perspective, and present a set of proposed mapped boundaries. (PDF contains 23 pages.)
Resumo:
With elevating interest to establish conservation efforts for groundfish stocks and continued scrutiny over the value of marine protected areas along the west coast, the importance of enhancing our knowledge of seabed characteristics through mapping activities is becoming increasingly more important, especially in a timely manner. Shortly after the inception of the Seabed Mapping Initiative instituted with the US Geological Survey (USGS), the National Marine Sanctuary Program (NMSP) assembled a panel of habitat mapping experts. They determined that the status of existing data sets and future data acquisition needs varied widely among the individual sanctuaries and that more detailed site assessments were needed to better prioritize mapping efforts and outline an overall joint strategy. To assist with that specific effort and provide pertinent information for the Olympic Coast National Marine Sanctuary’s (OCNMS) Management Plan Review, this report summarizes the mapping efforts that have taken place at the site to date; calculates a timeframe for completion of baseline mapping efforts when operating under current data acquisition limitations; describes an optimized survey strategy to dramatically reduce the required time to complete baseline surveying; and provides estimates for the needed vessel sea-days (DAS) to accomplish baseline survey completion within a 2, 5 and 10 year timeframe. (PDF contains 38 pages.)
Resumo:
The implementation of various types of marine protected areas is one of several management tools available for conserving representative examples of the biological diversity within marine ecosystems in general and National Marine Sanctuaries in particular. However, deciding where and how many sites to establish within a given area is frequently hampered by incomplete knowledge of the distribution of organisms and an understanding of the potential tradeoffs that would allow planners to address frequently competing interests in an objective manner. Fortunately, this is beginning to change. Recent studies on the continental shelf of the northeastern United States suggest that substrate and water mass characteristics are highly correlated with the composition of benthic communities and may therefore, serve as proxies for the distribution of biological biodiversity. A detailed geo-referenced interpretative map of major sediment types within Stellwagen Bank National Marine Sanctuary (SBNMS) has recently been developed, and computer-aided decision support tools have reached new levels of sophistication. We demonstrate the use of simulated annealing, a type of mathematical optimization, to identify suites of potential conservation sites within SBNMS that equally represent 1) all major sediment types and 2) derived habitat types based on both sediment and depth in the smallest amount of space. The Sanctuary was divided into 3610 0.5 min2 sampling units. Simulations incorporated constraints on the physical dispersion of sampling units to varying degrees such that solutions included between one and four site clusters. Target representation goals were set at 5, 10, 15, 20, and 25 percent of each sediment type, and 10 and 20 percent of each habitat type. Simulations consisted of 100 runs, from which we identified the best solution (i.e., smallest total area) and four nearoptimal alternates. We also plotted total instances in which each sampling unit occurred in solution sets of the 100 runs as a means of gauging the variety of spatial configurations available under each scenario. Results suggested that the total combined area needed to represent each of the sediment types in equal proportions was equal to the percent representation level sought. Slightly larger areas were required to represent all habitat types at the same representation levels. Total boundary length increased in direct proportion to the number of sites at all levels of representation for simulations involving sediment and habitat classes, but increased more rapidly with number of sites at higher representation levels. There were a large number of alternate spatial configurations at all representation levels, although generally fewer among one and two versus three- and four-site solutions. These differences were less pronounced among simulations targeting habitat representation, suggesting that a similar degree of flexibility is inherent in the spatial arrangement of potential protected area systems containing one versus several sites for similar levels of habitat representation. We attribute these results to the distribution of sediment and depth zones within the Sanctuary, and to the fact that even levels of representation were sought in each scenario. (PDF contains 33 pages.)
Resumo:
In 2003, twelve marine protected areas were established in state waters (0-3 nmi) surrounding the Channel Islands. NOAA is considering extending this network (3-6 nmi) into deeper waters of the Channel Islands National Marine Sanctuary (CINMS). In order for effective long-term management of the deep water reserves to occur, a well-structured monitoring program is required to assess effectiveness. The CINMS and the National Marine Sanctuary Program (NMSP) hosted a 2-day workshop in April 2005 to develop a monitoring plan for the proposed federal marine reserves in that sanctuary. Conducted at the University of California at Santa Barbara, participants included scientists from academic, state, federal, and private research institutions. Workshop participants developed project ideas that could answer priority questions posed by the NMSP. This workshop report will be used to develop a monitoring plan for the reserves. (PDF contains 47 pages.)
Resumo:
Almost 120 days at sea aboard three NOAA research vessels and one fishing vessel over the past three years have supported biogeographic characterization of Tortugas Ecological Reserve (TER). This work initiated measurement of post-implementation effects of TER as a refuge for exploited species. In Tortugas South, seafloor transect surveys were conducted using divers, towed operated vehicles (TOV), remotely operated vehicles (ROV), various sonar platforms, and the Deepworker manned submersible. ARGOS drifter releases, satellite imagery, ichthyoplankton surveys, sea surface temperature, and diver census were combined to elucidate potential dispersal of fish spawning in this environment. Surveys are being compiled into a GIS to allow resource managers to gauge benthic resource status and distribution. Drifter studies have determined that within the ~ 30 days of larval life stage for fishes spawning at Tortugas South, larvae could reach as far downstream as Tampa Bay on the west Florida coast and Cape Canaveral on the east coast. Together with actual fish surveys and water mass delineation, this work demonstrates that the refuge status of this area endows it with tremendous downstream spillover and larval export potential for Florida reef habitats and promotes the maintenance of their fish communities. In Tortugas North, 30 randomly selected, permanent stations were established. Five stations were assigned to each of the following six areas: within Dry Tortugas National Park, falling north of the prevailing currents (Park North); within Dry Tortugas National Park, falling south of the prevailing currents (Park South); within the Ecological Reserve falling north of the prevailing currents (Reserve North); within the Ecological Reserve falling south of the prevailing currents (Reserve South); within areas immediately adjacent to these two strata, falling north of the prevailing currents (Out North); and within areas immediately adjacent to these two strata, falling south of the prevailing currents (Out South). Intensive characterization of these sites was conducted using multiple sonar techniques, TOV, ROV, diver-based digital video collection, diver-based fish census, towed fish capture, sediment particle-size, benthic chlorophyll analyses, and stable isotope analyses of primary producers, fish, and, shellfish. In order to complement and extend information from studies focused on the coral reef, we have targeted the ecotone between the reef and adjacent, non-reef habitats as these areas are well-known in ecology for indicating changes in trophic relationships at the ecosystem scale. Such trophic changes are hypothesized to occur as top-down control of the system grows with protection of piscivorous fishes. Preliminary isotope data, in conjunction with our prior results from the west Florida shelf, suggest that the shallow water benthic habitats surrounding the coral reefs of TER will prove to be the source of a significant amount of the primary production ultimately fueling fish production throughout TER and downstream throughout the range of larval fish dispersal. Therefore, the status and influence of the previously neglected, non-reef habitat within the refuge (comprising ~70% of TER) appears to be intimately tied to the health of the coral reef community proper. These data, collected in a biogeographic context, employing an integrated Before-After Control Impact design at multiple spatial scales, leave us poised to document and quantify the postimplementation effects of TER. Combined with the work at Tortugas South, this project represents a multi-disciplinary effort of sometimes disparate disciplines (fishery oceanography, benthic ecology, food web analysis, remote sensing/geography/landscape ecology, and resource management) and approaches (physical, biological, ecological). We expect the continuation of this effort to yield critical information for the management of TER and the evaluation of protected areas as a refuge for exploited species. (PDF contains 32 pages.)
Resumo:
In Central California, and elsewhere around the world, a great deal of discussion is occurring about the use of marine protected areas (MPAs) as a tool to help manage marine resources. This discussion is taking place because there is growing evidence that humans have depleted marine resources in many parts of the world, often despite strong regulatory efforts. Moreover, there is also mounting evidence that the degradation of marine resources began long ago, and we do not fully realize how much humans have altered “natural” environments. This uncertainty has led people to discuss the use of MPAs as a precautionary tool to prevent depletion or extinction of marine resources, and as a means of redressing past damages. The discussion about the use of marine reserves is increasing in intensity in California because several resource management agencies are considering reserves as they create or revise management plans. Often, the discussions surrounding this important public policy debate lead to questions about the biological or ecological value of existing marine protected areas. More than 100 MPAs exist along the coast of California. Many of these were established arbitrarily and lack specific purposes. Some California marine protected areas also have co-occurring or overlapping boundaries, have conflicting designations for use, and have conflicting rules and regulations. Because few of the existing marine protected areas have clearly articulated goals or objectives, however, it is difficult or impossible to evaluate their ecological effectiveness. (PDF contains 18 pages.)
Resumo:
Venomous Indo-Pacific lionfish (Pterois miles and P. volitans) are now established along the Southeast U.S.A. and parts of the Caribbean and pose a serious threat to reef fish communities of these regions. Lionfish are likely to invade the Gulf of Mexico and potentially South America in the near future. Introductions of lionfish were noted since the 1980s along south Florida and by 2000 lionfish were established off the coast of North Carolina. Lionfish are now one of the more numerous predatory reef fishes at some locations off the Southeast U.S.A. and Caribbean. Lionfish are largely piscivores that feed occasionally on economically important reef fishes. The trophic impacts of lionfish could alter the structure of native reef fish communities and potentially hamper stock rebuilding efforts of the Snapper –Grouper Complex. Additional effects of the lionfish invasion are far-reaching and could increase coral reef ecosystem stress, threaten human health, and ultimately impact the marine aquarium industry. Control strategies for lionfish are needed to mitigate impacts, especially in protected areas. This integrated assessment provides a general overview of the biology and ecology of lionfish including genetics, taxonomy, reproductive biology, early life history and dispersal, venom defense and predation, and feeding ecology. In addition, alternative management actions for mitigating the negative impacts of lionfish, approaches for reducing the risk of future invasions, and directions for future research are provided.
Resumo:
The Alliance for Coastal Technologies (ACT) convened a workshop, sponsored by the Hawaii-Pacific and Alaska Regional Partners, entitled Underwater Passive Acoustic Monitoring for Remote Regions at the Hawaii Institute of Marine Biology from February 7-9, 2007. The workshop was designed to summarize existing passive acoustic technologies and their uses, as well as to make strategic recommendations for future development and collaborative programs that use passive acoustic tools for scientific investigation and resource management. The workshop was attended by 29 people representing three sectors: research scientists, resource managers, and technology developers. The majority of passive acoustic tools are being developed by individual scientists for specific applications and few tools are available commercially. Most scientists are developing hydrophone-based systems to listen for species-specific information on fish or cetaceans; a few scientists are listening for biological indicators of ecosystem health. Resource managers are interested in passive acoustics primarily for vessel detection in remote protected areas and secondarily to obtain biological and ecological information. The military has been monitoring with hydrophones for decades;however, data and signal processing software has not been readily available to the scientific community, and future collaboration is greatly needed. The challenges that impede future development of passive acoustics are surmountable with greater collaboration. Hardware exists and is accessible; the limits are in the software and in the interpretation of sounds and their correlation with ecological events. Collaboration with the military and the private companies it contracts will assist scientists and managers with obtaining and developing software and data analysis tools. Collaborative proposals among scientists to receive larger pools of money for exploratory acoustic science will further develop the ability to correlate noise with ecological activities. The existing technologies and data analysis are adequate to meet resource managers' needs for vessel detection. However, collaboration is needed among resource managers to prepare large-scale programs that include centralized processing in an effort to address the lack of local capacity within management agencies to analyze and interpret the data. Workshop participants suggested that ACT might facilitate such collaborations through its website and by providing recommendations to key agencies and programs, such as DOD, NOAA, and I00s. There is a need to standardize data formats and archive acoustic environmental data at the national and international levels. Specifically, there is a need for local training and primers for public education, as well as by pilot demonstration projects, perhaps in conjunction with National Marine Sanctuaries. Passive acoustic technologies should be implemented immediately to address vessel monitoring needs. Ecological and health monitoring applications should be developed as vessel monitoring programs provide additional data and opportunities for more exploratory research. Passive acoustic monitoring should also be correlated with water quality monitoring to ease integration into long-term monitoring programs, such as the ocean observing systems. [PDF contains 52 pages]
Resumo:
With arguably the world’s most decentralized coastal governance regime, the Philippines has implemented integrated coastal management (ICM) for over 30 years as one of the most successful frameworks for coastal resource management in the country. Anthropogenic drivers continue to threaten the food security and livelihood of coastal residents; contributing to the destruction of critical marine habitats, which are heavily relied upon for the goods and services they provide. ICM initiatives in the Philippines have utilized a variety of tools, particularly marine protected areas (MPAs), to promote poverty alleviation through food security and sustainable forms of development. From the time marine reserves were first shown to effectively address habitat degradation and decline in reef fishery production (Alcala et al., 2001) over 1,100 locally managed MPAs have been established in the Philippines; yet only 10-20% of these are effectively managed (White et al., 2006; PhilReefs, 2008). In order to increase management effectiveness, biophysical, legal, institutional and social linkages need to be strengthened and “scaled up” to accommodate a more holistic systems approach (Lowry et al., 2009). This summary paper incorporates the preliminary results of five independently conducted studies. Subject areas covered are the social and institutional elements of MPA networks, ecosystem-based management applicability, financial sustainability and the social vulnerability of coastal residents to climate change in the Central Philippines. Each section will provide insight into these focal areas and suggest how management strategies may be adapted to holistically address these contemporary issues. (PDF contains 4 pages)
Resumo:
Within natural resource management, there is increasing criticism of the traditional model of top-down management as a method of governance, as researchers and managers alike have recognized that resources can frequently be better managed when stakeholders are directly involved in management. As a result, in recent years the concept of co-management of natural resources, in which management responsibilities are shared between the government and stakeholders, has become increasingly popular, both in the academic literature and in practice. However, while co-management has significant potential as a successful management tool, the issue of equity in co-management has rarely been addressed. It is necessary to understand the differential impacts on stakeholders of co-management processes and the degree to which diverse stakeholders are represented within co-management. Understanding the interests of various stakeholders can be a way to more effectively address the distributional and social impacts of coastal policies, which can in turn increase compliance with management measures and lead to more sustainable resource management regimes. This research seeks to take a closer look at the concepts of co-management and participation through a number of case studies of marine protected areas (MPAs) in the Caribbean. (PDF contains 4 pages)