81 resultados para GIS, geolocalizzazione, osm, webmapping, geoinformatica, neogeografia, opendata, geodata


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This CD contains summary data of bottlenose dolphins stranded in South Carolina using a Geographical Information System (GIS) and contains two published manuscripts in .pdf files. The intent of this CD is to provide data on bottlenose dolphin strandings in South Carolina to marine mammal researchers and managers. This CD is an accumulation of 14 years of stranding data collected through the collaborations of the National Ocean Service, Center for Coastal Environmental Health and Biomolecular Research (CCEHBR), the South Carolina Department of Natural Resources, and numerous volunteers and veterinarians that comprised the South Carolina Marine Mammal Stranding Network. Spatial and temporal information can be visually represented on maps using GIS. For this CD, maps were created to show relationships of stranding densities with land use, human population density, human interaction with dolphins, high geographical regions of live strandings, and seasonal changes. Point maps were also created to show individual strandings within South Carolina. In summary, spatial analysis revealed higher densities of bottlenose dolphin strandings in Charleston and Beaufort Counties, which consist of urban land with agricultural input. This trend was positively correlated with higher human population levels in these coastal counties as compared with other coastal counties. However, spatial analysis revealed that certain areas within a county may have low human population levels but high stranding density, suggesting that the level of effort to respond to strandings is not necessarily positively correlated with the density of strandings in South Carolina. Temporal analysis revealed a significantly higher density of bottlenose dolphin strandings in the northern portion of the State in the fall, mostly due to an increase of neonate strandings. On a finer geographic scale, seasonal stranding densities may fluctuate depending on the region of interest. Charleston Harbor had the highest density of live bottlenose dolphin strandings compared to the rest of the State. This was due in large part to the number of live dolphin entanglements in the crab pot fishery, the largest source of fishery-related mortality for bottlenose dolphins in South Carolina (Burdett and McFee 2004). Spatial density calculations also revealed that Charleston and Beaufort accounted for the majority of dolphins that were involved with human activities. 1

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mission of NOAA’s Office of National Marine Sanctuaries (ONMS) is to serve as the trustee for a system of marine protected areas, to conserve, protect and enhance biodiversity. To assist in accomplishing this mission, the ONMS has developed a partnership with NOAA’s Center for Coastal Monitoring and Assessment’s Biogeography Branch (CCMA-BB) to conduct biogeographic assessments of marine resources within and adjacent to the marine waters of NOAA’s National Marine Sanctuaries (Kendall and Monaco, 2003). Biogeography is the study of spatial and temporal distributions of organisms, their associated habitats, and the historical and biological factors that influence species’ distributions. Biogeography provides a framework to integrate species distributions and life history data with information on the habitats of a region to characterize and assess living marine resources within a sanctuary. The biogeographic data are integrated in a Geographical Information System (GIS) to enable visualization of species’ spatial and temporal patterns, and to predict changes in abundance that may result from a variety of natural and anthropogenic perturbations or management strategies (Monaco et al., 2005; Battista and Monaco, 2004). Defining biogeographic patterns of living marine resources found throughout the Northwestern Hawaiian Islands (NWHI) was identified as a priority activity at a May 2003 workshop designed to outline scientifi c and management information needs for the NWHI (Alexander et al., 2004). NOAA’s Biogeography Branch and the Papahanaumokuakea Marine National Monument (PMNM) under the direction of the ONMS designed and implemented this biogeographic assessment to directly support the research and management needs of the PMNM by providing a suite of spatially-articulated products in map and tabular formats. The major fi ndings of the biogeographic assessment are organized by chapter and listed below.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

NOAA’s National Centers for Coastal Ocean Science (NCCOS) conducts and supports research, monitoring, assessments, and technical assistance to meet NOAA’s coastal stewardship and management responsibilities. In 2001 the Biogeography Branch of NCCOS partnered with NOAA’s National Marine Sanctuary Program (NMSP) to conduct biogeographic assessments to support the management plan updates for the sanctuaries. The first biogeographic assessment conducted in this partnership focused on three sanctuaries off north/ central California: Cordell Bank, Gulf of the Farallones and Monterey Bay. Phase I of this assessment was conducted from 2001 to 2004, with the primary goal to identify and gather the best available data and information to characterize and identify important biological areas and time periods within the study area. The study area encompasses the three sanctuaries and extends along the coastal ocean off California from Pt. Arena to Pt. Sal (35°-39°N). This partnership project was lead by the NCCOS Biogeography Branch, but included over 90 contributors and 25 collaborating institutions. Phase I results include: 1) a report on the overall assessment that includes hundreds of maps, tables and analyses; 2) an ecological linkage report on the marine and estuarine ecosystems along the coast of north/central California, and 3) related geographic information system (GIS) data and other summary data files, which are available for viewing and download in several formats at the following website: http://ccma.nos.noaa.gov/products/biogeography/canms_cd/welcome.html Phase II (this report) was initiated in the Fall of 2004 to complete the analyses of marine mammals and update the marine bird colony information. Phase II resulted in significant updates to the bird and mammal chapters, as well as adding an environmental settings chapter, which contains new and existing data and maps on the study area. Specifically, the following Phase II topics and items were either revised or developed new for Phase II: •environmental, ecological settings – new maps on marine physiographic features, sea surface temperature and fronts, chlorophyll and productivity •all bird colony or roost maps, including a summary of marine bird colonies •updated at-sea data CDAS data set (1980-2003) •all mammal maps and descriptions •new overall density maps for eight mammal species •new summary pinniped rookery/haulout map •new maps on at-sea richness for cetaceans and pinnipeds •most text in the mammal chapter •new summary tables for mammals on population status and spatial and temporal patterns

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Through research aimed at understanding the coastal environment, surveys designed to help manage the resource, and national programs to monitor environmental condition, we see a picture of a dynamic ecosystem that is Cape Romain National Wildlife Refuge (CRNWR). Currently, there are efforts underway to protect threatened species; monitor fish populations; and quantify the biological, physical, and chemical characteristics of this environment. The potential impacts to this system are just now being understood as ecological responses to human modification are observed and explained. As a starting point, this document compiles existing information about Cape Romain NWR in five topic areas and addresses the potential impacts to the Refuge. This review is intended to serve as a stepping stone to developing a research agenda in support of management of the Refuge. There are various sources of information on which to build a framework for monitoring conditions and detecting change to this environment. For instance, information on basic ecological function in estuarine environments has evolved over several decades. Long-term surveys of Southeast fisheries exist, as well as shellfish and sediment contaminants data from estuaries. Environmental monitoring and biological surveys at the Refuge continue. Recently, studies that examine the impacts to similar coastal habitats have been undertaken. This document puts past studies and ongoing work in context for Refuge managers and researchers. This report recommends that the next phase of this resource characterization focus on: • compiling relevant tabular and spatial data, as identified here, into a Geographic Information System (GIS) framework • assessing the abundance and diversity of fisheries utilizing CRNWR • delineating additional data layers, such as intertidal habitats and subtidal clam beds, from low-level aerial photography, hard copy maps, and other sources • continued inventories of plant and animal species dependent on the Refuge • monitoring physical and chemical environmental parameters using the methodology employed at National Estuarine Research Reserve System (NERRS) and other coastal sites, where appropriate • further definition of the potential risks to the Refuge and preparing responses to likely impacts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Biogeography Branch’s Sampling Design Tool for ArcGIS provides a means to effectively develop sampling strategies in a geographic information system (GIS) environment. The tool was produced as part of an iterative process of sampling design development, whereby existing data informs new design decisions. The objective of this process, and hence a product of this tool, is an optimal sampling design which can be used to achieve accurate, highprecision estimates of population metrics at a minimum of cost. Although NOAA’s Biogeography Branch focuses on marine habitats and some examples reflects this, the tool can be used to sample any type of population defined in space, be it coral reefs or corn fields.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Digital maps of the coral reef ecosystem (<~30m deep) of Majuro Atoll, Republic of the Marshall Islands, were created through visual interpretation of remote sensing imagery. Digital Globe’s Quickbird II satellite images were acquired between 2004 and 2006 and georeferenced to within 1.6 m of their true positions. Reef ecosystem features were digitized directly into a GIS at a display scale of 1:4000 using a minimum feature size of 1000 square meters. Benthic features were categorized according to a classification scheme with attributes including zone (location, such as lagoon or forereef, etc.), structure (bottom type, such as sand or patch reef, etc.) and percent hard bottom. Ground validation of habitat features was conducted at 311 sites in 2009. Resulting maps consisted of 1829 features covering 366 square kilometers. Results demonstrate that reef zones occurred in a typical progression of narrow bands from offshore, though forereef, reef flat, shoreline, land, backreef, and lagoon habitats. Lagoon was the largest zone mapped and covered nearly 80% of the atoll, although much of it was too deep to have structures identified from the satellite imagery. Dominant habitat structures by area were pavement and aggregate reef, which covered 29% and 18% of the mapped structures, respectively. Based on the number of features, individual and aggregated patch reefs comprised over 40% of the features mapped. Products include GIS based maps, field videos and pictures, satellite imagery, PDF atlas, and this summary report. Maps and associated data can be used to support science and management activities on Majuro reef ecosystems including inventory, monitoring, conservation, and sustainable development applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ecologic researchers are modeling the impact of vessel grounding to seagrass beds using GIS in the Florida Keys National Marine Sanctuary. The surface creation tools in the ArcGIS 3D Analyst extension help assess both the damage and recovery of these seagrass beds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many common fishes associated with Caribbean coral reef ecosystems use resources from more than 1 patch type during routine daily foraging activities. Few studies have provided direct evidence of connectivity across seascapes, and the importance of benthic seascape structure on movement behavior is poorly known. To address this knowledge gap, we coupled hydro-acoustic technology to track fish with seafloor mapping and pattern analysis techniques from landscape ecology to quantify seascape structure. Bluestriped grunts Haemulon sciurus and schoolmaster snapper Lutjanus apodus were tracked over 24 h periods using boat-based acoustic telemetry. Movement pathways, and day and night activity spaces were mapped using geographical information system (GIS) tools, and seafloor structure within activity spaces was mapped from high-resolution aerial photography and quantified using spatial pattern metrics. For both fish species, night activity spaces were significantly larger than day activity spaces. Fish exhibited a daytime preference for seascapes with aggregate coral reef and colonized bedrock, then shifted to night activity spaces with lower complexity soft sediment including sand, seagrass, and scattered coral/rock. Movement path complexity was negatively correlated with seascape complexity. This demonstrates direct connectivity across multiple patch types and represents the first study to apply quantitative landscape ecology techniques to examine the movement ecology of marine fish. The spatially explicit approach facilitates understanding to the linkages between biological processes and the heterogeneity of the landscape. Such studies are essential for identifying ecologically relevant spatial scales, delineating essential fish habitat and designing marine protected areas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the Caribbean, many coral reef associated fishes have been observed making diel migrations, yet little is known about the detailed movement pathways and space use patterns of individual fish. Often these migrations occur along temporally or spatially consistent corridors that connect preferred resting and foraging habitats. Recent analysis of gut contents from Haemulids and Lutjanids, has provided evidence that these species forage in seagrass beds and other habitats near their coral reef refuges. Few studies have provided direct and spatially explicit evidence of nocturnal migrations and detailed day and night space use patterns for individual fish. This study integrated manual acoustic telemetry to track two common reef species, the bluestriped grunt (Haemulon sciurus) and schoolmaster snapper (Lutjanus apodus) throughout their daily home range. Space use patterns of these species were then examined using Geographical Information System (GIS) tools to link movement behavior to seascape structure derived in a benthic habitat map. This study represents a novel integration of spatial technologies to enhance our understanding of the movement ecology of adult H. sciurus and L. apodus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The primary objective of this project, “the Assessment of Existing Information on Atlantic Coastal Fish Habitat”, is to inform conservation planning for the Atlantic Coastal Fish Habitat Partnership (ACFHP). ACFHP is recognized as a Partnership by the National Fish Habitat Action Plan (NFHAP), whose overall mission is to protect, restore, and enhance the nation’s fish and aquatic communities through partnerships that foster fish habitat conservation. This project is a cooperative effort of NOAA/NOS Center for Coastal Monitoring and Assessment (CCMA) Biogeography Branch and ACFHP. The Assessment includes three components; 1. a representative bibliographic and assessment database, 2. a Geographical Information System (GIS) spatial framework, and 3. a summary document with description of methods, analyses of habitat assessment information, and recommendations for further work. The spatial bibliography was created by linking the bibliographic table developed in Microsoft Excel and exported to SQL Server, with the spatial framework developed in ArcGIS and exported to GoogleMaps. The bibliography is a comprehensive, searchable database of over 500 selected documents and data sources on Atlantic coastal fish species and habitats. Key information captured for each entry includes basic bibliographic data, spatial footprint (e.g. waterbody or watershed), species and habitats covered, and electronic availability. Information on habitat condition indicators, threats, and conservation recommendations are extracted from each entry and recorded in a separate linked table. The spatial framework is a functional digital map based on polygon layers of watersheds, estuarine and marine waterbodies derived from NOAA’s Coastal Assessment Framework, MMS/NOAA’s Multipurpose Marine Cadastre, and other sources, providing spatial reference for all of the documents cited in the bibliography. Together, the bibliography and assessment tables and their spatial framework provide a powerful tool to query and assess available information through a publicly available web interface. They were designed to support the development of priorities for ACFHP’s conservation efforts within a geographic area extending from Maine to Florida, and from coastal watersheds seaward to the edge of the continental shelf. The Atlantic Coastal Fish Habitat Partnership has made initial use of the Assessment of Existing Information. Though it has not yet applied the AEI in a systematic or structured manner, it expects to find further uses as the draft conservation strategic plan is refined, and as regional action plans are developed. It also provides a means to move beyond an “assessment of existing information” towards an “assessment of fish habitat”, and is being applied towards the National Fish Habitat Action Plan (NFHAP) 2010 Assessment. Beyond the scope of the current project, there may be application to broader initiatives such as Integrated Ecosystem Assessments (IEAs), Ecosystem Based Management (EBM), and Marine Spatial Planning (MSP).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The overall purpose of this project was to collect available information on the characteristics of essential fish habitats in protected and non-protected marine areas around the islands of Puerto Rico. Specifically, this project compiled historical information on benthic habitats and the status of marine resources into a Geographic Information System (GIS) by digitizing paper copies of existing marine geologic maps that were developed for the Caribbean Fishery Management Council (CFMC) for areas around the Commonwealth of Puerto Rico. In addition, information on benthic habitat types, Essential Fish Habitat (EFH) requirements, and fishing and non-fishing impacts to marine resources were compiled for two priority areas: La Parguera and Vieques. The information obtained will help to characterize and select habitats for future monitoring of impacts of fishing and non-fishing activities and to develop management recommendations for conservation of important marine habitats. The project focused specifically on areas identified as priorities for conservation by the Puerto Rico Department of Natural and Environmental Resources (DNER) and the Local Action Strategy Overfishing Group.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coral reef ecosystems of the Virgin Islands Coral Reef National Monument, Virgin Islands National Park and the surrounding waters of St. John, U.S. Virgin Islands are a precious natural resource worthy of special protection and conservation. The mosaic of habitats including coral reefs, seagrasses and mangroves, are home to a diversity of marine organisms. These benthic habitats and their associated inhabitants provide many important ecosystem services to the community of St. John, such as fishing, tourism and shoreline protection. However, coral reef ecosystems throughout the U.S. Caribbean are under increasing pressure from environmental and anthropogenic stressors that threaten to destroy the natural heritage of these marine habitats. Mapping of benthic habitats is an integral component of any effective ecosystem-based management approach. Through the implementation of a multi-year interagency agreement, NOAA’s Center for Coastal Monitoring and Assessment - Biogeography Branch and the U.S. National Park Service (NPS) have completed benthic habitat mapping, field validation and accuracy assessment of maps for the nearshore marine environment of St. John. This work is an expansion of ongoing mapping and monitoring efforts conducted by NOAA and NPS in the U.S. Caribbean and replaces previous NOAA maps generated by Kendall et al. (2001) for the waters around St. John. The use of standardized protocols enables the condition of the coral reef ecosystems around St. John to be evaluated in context to the rest of the Virgin Island Territories and other U.S. coral ecosystems. The products from this effort provide an accurate assessment of the abundance and distribution of marine habitats surrounding St. John to support more effective management and conservation of ocean resources within the National Park system. This report documents the entire process of benthic habitat mapping in St. John. Chapter 1 provides a description of the benthic habitat classification scheme used to categorize the different habitats existing in the nearshore environment. Chapter 2 describes the steps required to create a benthic habitat map from visual interpretation of remotely sensed imagery. Chapter 3 details the process of accuracy assessment and reports on the thematic accuracy of the final maps. Finally, Chapter 4 is a summary of the basic map content and compares the new maps to a previous NOAA effort. Benthic habitat maps of the nearshore marine environment of St. John, U.S. Virgin Islands were created by visual interpretation of remotely sensed imagery. Overhead imagery, including color orthophotography and IKONOS satellite imagery, proved to be an excellent source from which to visually interpret the location, extent and attributes of marine habitats. NOAA scientists were able to accurately and reliably delineate the boundaries of features on digital imagery using a Geographic Information System (GIS) and fi eld investigations. The St. John habitat classification scheme defined benthic communities on the basis of four primary coral reef ecosystem attributes: 1) broad geographic zone, 2) geomorphological structure type, 3) dominant biological cover, and 4) degree of live coral cover. Every feature in the benthic habitat map was assigned a designation at each level of the scheme. The ability to apply any component of this scheme was dependent on being able to identify and delineate a given feature in remotely sensed imagery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Biogeography Branch’s Sampling Design Tool for ArcGIS provides a means to effectively develop sampling strategies in a geographic information system (GIS) environment. The tool was produced as part of an iterative process of sampling design development, whereby existing data informs new design decisions. The objective of this process, and hence a product of this tool, is an optimal sampling design which can be used to achieve accurate, high-precision estimates of population metrics at a minimum of cost. Although NOAA’s Biogeography Branch focuses on marine habitats and some examples reflects this, the tool can be used to sample any type of population defined in space, be it coral reefs or corn fields.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Land-based pollution is commonly identified as a major contributor to the observed deterioration of shallow-water coral reef ecosystem health. Human activity on the coastal landscape often induces nutrient enrichment, hypoxia, harmful algal blooms, toxic contamination and other stressors that have degraded the quality of coastal waters. Coral reef ecosystems throughout Puerto Rico, including Jobos Bay, are under threat from coastal land uses such as urban development, industry and agriculture. The objectives of this report were two-fold: 1. To identify potentially harmful land use activities to the benthic habitats of Jobos Bay, and 2. To describe a monitoring plan for Jobos Bay designed to assess the impacts of conservation practices implemented on the watershed. This characterization is a component of the partnership between the U.S. Department of Agriculture (USDA) and the National Oceanic and Atmospheric Administration (NOAA) established by the Conservation Effects Assessment Project (CEAP) in Jobos Bay. CEAP is a multi-agency effort to quantify the environmental benefits of conservation practices used by private landowners participating in USDA programs. The Jobos Bay watershed, located in southeastern Puerto Rico, was selected as the first tropical CEAP Special Emphasis Watershed (SEW). Both USDA and NOAA use their respective expertise in terrestrial and marine environments to model and monitor Jobos Bay resources. This report documents NOAA activities conducted in the first year of the three-year CEAP effort in Jobos Bay. Chapter 1 provides a brief overview of the project and background information on Jobos Bay and its watershed. Chapter 2 implements NOAA’s Summit to Sea approach to summarize the existing resource conditions on the watershed and in the estuary. Summit to Sea uses a GIS-based procedure that links patterns of land use in coastal watersheds to sediment and pollutant loading predictions at the interface between terrestrial and marine environments. The outcome of Summit to Sea analysis is an inventory of coastal land use and predicted pollution threats, consisting of spatial data and descriptive statistics, which allows for better management of coral reef ecosystems. Chapters 3 and 4 describe the monitoring plan to assess the ecological response to conservation practices established by USDA on the watershed. Jobos Bay is the second largest estuary in Puerto Rico, but has more than three times the shoreline of any other estuarine area on the island. It is a natural harbor protected from offshore wind and waves by a series of mangrove islands and the Punta Pozuelo peninsula. The Jobos Bay marine ecosystem includes 48 km² of mangrove, seagrass, coral reef and other habitat types that span both intertidal and subtidal areas. Mapping of Jobos Bay revealed 10 different benthic habitats of varying prevalence, and a large area of unknown bottom type covering 38% of the entire bay. Of the known benthic habitats, submerged aquatic vegetation, primarily seagrass, is the most common bottom type, covering slightly less than 30% of the bay. Mangroves are the dominant shoreline feature, while coral reefs comprise only 4% of the total benthic habitat. However, coral reefs are some of the most productive habitats found in Jobos Bay, and provide important habitat and nursery grounds for fish and invertebrates of commercial and recreational value.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gray’s Reef National Marine Sanctuary (GRNMS) is exploring the concept of a research area (RA) within its boundaries. The idea of a research area was first suggested in public scoping meetings held prior to the review of the Gray’s Reef Management Plan. An RA is a region specifically designed for conducting controlled scientific studies in the absence of confounding factors. As a result, a multidisciplinary group gathered by GRNMS was convened to consider the issue. This Research Area Working Group (RAWG) requested that a suite of analyses be conducted to evaluate the issue quantitatively. To meet this need, a novel selection procedure and geographic information system (GIS) was created to find the optimal location for an RA while balancing the needs of research and existing users. This report and its associated GIS files describe the results of the requested analyses and enable further quantitative investigation of this topic by the RAWG and GRNMS.