90 resultados para Estuarine animals


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Perhaps the most difficult job of the ecotoxicologist is extrapolating data calculated from laboratory experiments with high precision and accuracy into the real world of highly-dynamics aquatic environments. The establishment of baseline laboratory toxicity testing data for individual compounds and ecologically important and field studies serve as a precursor to ecosystem level studies needed for ecological risk assessment. The first stage in the field portion of risk assessment is the determination of actual environmental concentrations of the contaminant being studied and matching those concentrations with laboratory toxicity tests. Risk estimates can be produced via risk quotients that would determine the probability that adverse effects may occur. In this first stage of risk assessment, environmental realism is often not achieved. This is due, in part, to the fact that single-species laboratory toxicity tests, while highly controlled, do not account for the complex interactions (Chemical, physical, and biological) that take place in the natural environment. By controlling as many variables in the laboratory as possible, an experiment can be produced in such a fashion that real effects from a compound can be determined for a particular test organism. This type of approach obviously makes comparison with real world data most difficult. Conversely, field oriented studies fall short in the interpretation of ecological risk assessment because of low statistical power, lack of adequate replicaiton, and the enormous amount of time and money needed to perform such studies. Unlike a controlled laboratory bioassay, many other stressors other than the chemical compound in question affect organisms in the environment. These stressors range from natural occurrences (such as changes in temperature, salinity, and community interactions) to other confounding anthropogenic inputs. Therefore, an improved aquatic toxicity test that will enhance environmental realism and increase the accuracy of future ecotoxicological risk assessments is needed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In March-April 2004, the National Oceanic and Atmospheric Administration (NOAA), U.S. Environmental Protection Agency (EPA), and State of Florida (FL) conducted a study to assess the status of ecological condition and stressor impacts throughout the South Atlantic Bight (SAB) portion of the U.S. continental shelf and to provide this information as a baseline for evaluating future changes due to natural or human-induced disturbances. The boundaries of the study region extended from Cape Hatteras, North Carolina to West Palm Beach, Florida and from navigable depths along the shoreline seaward to the shelf break (~100m). The study incorporated standard methods and indicators applied in previous national coastal monitoring programs — Environmental Monitoring and Assessment Program (EMAP) and National Coastal Assessment (NCA) — including multiple measures of water quality, sediment quality, and biological condition. Synoptic sampling of the various indicators provided an integrative weight-of-evidence approach to assessing condition at each station and a basis for examining potential associations between presence of stressors and biological responses. A probabilistic sampling design, which included 50 stations distributed randomly throughout the region, was used to provide a basis for estimating the spatial extent of condition relative to the various measured indicators and corresponding assessment endpoints (where available). Conditions of these offshore waters are compared to those of southeastern estuaries, based on data from similar EMAP/NCA surveys conducted in 2000-2004 by EPA, NOAA, and partnering southeastern states (Florida, Georgia, South Carolina, North Carolina, Virginia) (NCA database for estuaries, EPA Gulf Ecology Division, Gulf Breeze FL). Data from a total of 747 estuarine stations are included in this database. As for the offshore sites, the estuarine samples were collected using standard methods and indicators applied in previous coastal EMAP/NCA surveys including the probabilistic sampling design and multiple indicators of water quality, sediment quality, and biological condition (benthos and fish). The majority of the SAB had high levels of DO in near-bottom water (> 5 mg L-1) indicative of "good" water quality. DO levels in bottom waters exceeded this upper threshold at all sites throughout the coastal-ocean survey area and in 76% of estuarine waters. Twenty-one percent of estuarine bottom waters had moderate levels of DO between 2 and 5 mg L-1 and 3% had DO levels below 2 mg L-1. The majority of sites with DO in the low range considered to be hypoxic (< 2 mg L-1) occurred in North Carolina estuaries. There also was a notable concentration of stations with moderate DO levels (2 – 5 mg L-1) in Georgia and South Carolina estuaries. Approximately 58% of the estuarine area had moderate levels of chlorophyll a (5-10 μg L-1) and about 8% of the area had higher levels, in excess of 10 μg L-1, indicative of eutrophication. The elevated chlorophyll a levels appeared to be widespread throughout the estuaries of the region. In contrast, offshore waters throughout the region had relatively low levels of chlorophyll a with 100% of the offshore survey area having values < 5 μg L-1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The overall goal of the MARine and Estuarine goal Setting (MARES) project for South Florida is “to reach a science-based consensus about the defining characteristics and fundamental regulating processes of a South Florida coastal marine ecosystem that is both sustainable and capable of providing the diverse ecosystem services upon which our society depends.” Through participation in a systematic process of reaching such a consensus, science can contribute more directly and effectively to the critical decisions being made by both policy makers and by natural resource and environmental management agencies. The document that follows briefly describes the MARES project and this systematic process. It then describes in considerable detail the resulting output from the first two steps in the process, the development of conceptual diagrams and an Integrated Conceptual Ecosystem Model (ICEM) for the first subregion to be addressed by MARES, the Florida Keys/Dry Tortugas (FK/DT). What follows with regard to the FK/DT is the input received from more than 60 scientists, agency resource managers, and representatives of environmental organizations beginning with a workshop held December 9-10, 2009 at Florida International University in Miami, Florida.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The overall goal of the MARES (MARine and Estuarine goal Setting) project for South Florida is “to reach a science-based consensus about the defining characteristics and fundamental regulating processes of a South Florida coastal marine ecosystem that is both sustainable and capable of providing the diverse ecosystem services upon which our society depends.” Through participation in a systematic process of reaching such a consensus, science can contribute more directly and effectively to the critical decisions being made both by policy makers and by natural resource and environmental management agencies. The document that follows briefly describes MARES overall and this systematic process. It then describes in considerable detail the resulting output from the first step in the process, the development of an Integrated Conceptual Ecosystem Model (ICEM) for the third subregion to be addressed by MARES, the Southeast Florida Coast (SEFC). What follows with regard to the SEFC relies upon the input received from more than 60 scientists, agency resource managers, and representatives of environmental organizations during workshops held throughout 2009–2012 in South Florida.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The overall goal of the MARine and Estuarine goal Setting (MARES) project for South Florida is “to reach a science-based consensus about the defining characteristics and fundamental regulating processes of a South Florida coastal marine ecosystem that is both sustainable and capable of providing the diverse ecosystem services upon which our society depends.” Through participation in a systematic process of reaching such a consensus, science can contribute more directly and effectively to the critical decisions being made by both policy makers and by natural resource and environmental management agencies. The document that follows briefly describes the MARES project and this systematic process. It then describes in considerable detail the resulting output from the first two steps in the process, the development of conceptual diagrams and an Integrated Conceptual Ecosystem Model (ICEM) for the second subregion to be addressed by MARES, the Southwest Florida Shelf (SWFS). What follows with regard to the SWFS is the input received from more than 60 scientists, agency resource managers, and representatives of environmental organizations beginning with a workshop held August 19-20, 2010 at Florida Gulf Coast University in Fort Myers, Florida.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study was conducted in June 2009 to assess the current status of ecological condition and potential human-health risks throughout subtidal estuarine waters of the Sapelo Island National Estuarine Research Reserve (SINERR) along the coast of Georgia. Samples were collected for multiple indicators of ecosystem condition, including water quality (dissolved oxygen, salinity, temperature, pH, nutrients and chlorophyll, suspended solids, fecal coliform bacteria and coliphages), sediment quality (granulometry, organic matter content, chemical contaminant concentrations), biological condition (diversity and abundance of benthic fauna, fish tissue contaminant levels and pathologies), and human dimensions (fish-tissue contaminant levels relative to human-health consumption limits, various aesthetic properties). Use of a probabilistic sampling design facilitated the calculation of statistics to estimate the spatial extent of the Reserve classified according to various categories (i.e., Good, Fair, Poor) of ecological condition relative to established thresholds of these indicators, where available. Overall, the majority of subtidal habitat in the SINERR appeared to be healthy, with over half (56.7 %) of the Reserve area having water quality, sediment quality, and benthic biological condition indicators rated in the healthy to intermediate range of corresponding guideline thresholds. None of the stations sampled had one or more indicators in all three categories rated as poor/degraded. While these results are encouraging, it should be noted that one or more indicators were rated as poor/degraded in at least one of the three categories over 40% of the Reserve study area, represented by 12 of the 30 stations sampled. Although measures of fish tissue chemical contamination were not included in any of the above estimates, a number of trace metals, pesticides, polybrominated diphenyl ethers (PBDEs), and polychlorinated biphenyls (PCBs) were found at low yet detectable levels in some fish at stations where fish were caught. Levels of mercury and total PCBs in some fish specimens fell within EPA guideline values considered safe, given a consumption rate of no more than four fish meals per month. Moreover, PCB congener profiles in sediments and fish in the SINERR exhibit a relative abundance of higher-chlorinated homologs which are uniquely characteristic of Aroclor 1268. It has been well-documented that sediments and fish in the creeks and marshes near the LCP Chemicals Superfund site, near Brunswick, Georgia, also display this congener pattern associated with Aroclor 1268, a highly chlorinated mixture of PCBs used extensively at a chlor-alkali plant that was in operation at the LCP site from 1955-1994. This report provides results suggesting that the protected habitats lying within the boundaries of the SINERR may be experiencing the effects of a legacy of chemical contamination at a site over 40km away. These effects, as well as other potential stressors associated with increased development of nearby coastal areas, underscore the importance of establishing baseline ecological conditions that can be used to track potential changes in the future and to guide management and stewardship of the otherwise relatively unspoiled ecosystems of the SINERR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a 10-yr time-series data set, we analyzed the effects of two severe droughts on water-quality and ecosystem processes in a temperate, eutrophic estuary (Neuse River Estuary, North Carolina). During the droughts, dissolved inorganic nitrogen concentrations were on average 46–68% lower than the long-term mean due to reduced riverine input. Phytoplankton productivity and biomass were slightly below average for most of the estuary during a spring–autumn drought in 2002, but were dramatically lower than average throughout the estuary during an autumn–winter drought in 2007–2008. Droughts affected upper trophic levels through alteration of both habitat condition (i.e., bottom-water dissolved oxygen levels) and food availability. Bottomwater dissolved oxygen levels were near or slightly above average during the 2002 drought and during summer 2007. Concomitant with these modest improvements in bottom-water oxygen condition, fish kills were greatly reduced relative to the long-term average. Low-oxygen bottom-water conditions were more pronounced during summer 2008 in the latter stages of the 2007–2008 drought, and mesozooplankton abundances were eight-fold lower in summer 2008 than during nondrought years. Below-average mesozooplankton abundances persisted for well over 1 yr beyond cessation of the drought. Significant fish kills were observed in summer 2008 and 2009, perhaps due to the synergistic effects of hypoxia and reduced food availability. These results indicate that droughts can exert both ephemeral and prolonged multiyear influence on estuarine ecosystem processes and provide a glimpse into the future, when many regions of the world are predicted to face increased drought frequency and severity due to climate change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

If you own property on one of North Carolina’s estuaries, you can use this guide as a tool to learn about the choices you have to control your shoreline erosion and help decide which approach may be right for you. In North Carolina, we make a distinction between waterfront property that is located on the estuary, referred to as estuarine, shoreline, soundfront or riverside property, and waterfront property located directly on the ocean, referred to as oceanfront. Why? State laws and regulations addressing estuarine and oceanfront property, and the available erosion control methods, are quite different. This guide focuses on estuarine property. We’ll introduce you to the six main erosion control options in use in North Carolina and give you information about the out-of-pocket costs and tangible benefits of each option. We’ll also give you information about “hidden” costs and benefits that you may want to factor into your decision-making. You are fortunate to have a piece of estuarine shoreline to call your own, whether it’s your year-round residence or a weekend getaway. And if you’ve noticed some shoreline erosion lately, you’re probably a little concerned. But there are ready solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have recently exchanged and integrated into a single database tag detections for conch, teleost and elasmobranch fish from four separately maintained arrays in the U.S. Virgin Islands including the NMFS queen conch array (St. John nearshore), NOAA’s Biogeography Branch array (St. John nearshore & midshelf reef); UVI shelf edge arrays (Marine Conservation District, Grammanik & other shelf edge); NOAA NMFS Apex Predator array COASTSPAN (St. John nearshore). The integrated database has over 7.5 million hits. Data is shared only with consent of partners and full acknowledgements. Thus, the summary of integrated data here uses data from NOAA and UVI arrays under a cooperative agreement. The benefits of combining and sharing data have included increasing the total area of detection resulting in an understanding of broader scale connectivity than would have been possible with a single array. Partnering has also been cost-effectiveness through sharing of field work, staff time and equipment and exchanges of knowledge and experience across the network. Use of multiple arrays has also helped in optimizing the design of arrays when additional receivers are deployed. The combined arrays have made the USVI network one of the most extensive acoustic arrays in the world with a total of 150+ receivers available, although not necessarily all deployed at all times. Currently, two UVI graduate student projects are using acoustic array data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This cruise report is a summary of a field survey conducted within the Sapelo Island National Estuarine Research Reserve (SINERR), located on the Georgia coastline, June 7 – June 13, 2009. Multiple indicators of ecological condition and human dimensions were sampled synoptically at each of 30 stations throughout SINERR using a random probabilistic sampling design. Samples were collected for the analysis of benthic community structure and composition; concentrations of chemical contaminants (metals, pesticides, PAHs, PCBs, PBDEs) in sediments and target demersal biota; nutrient and chlorophyll levels in the water column; bacterial contaminants in the water column; and other basic habitat characteristics such as depth, salinity, temperature, dissolved oxygen, turbidity, total suspended solids, pH, sediment grain size, and organic carbon content. In addition to the fish samples that were collected for analysis of chemical contaminants relative to human-health consumption limits, other human-dimension indicators were sampled as well including presence or absence of fishing gear, vessels, surface trash, and noxious sediment odors. The overall purpose of the survey was to collect data to assess the status of ecosystem condition and potential stressor impacts throughout SINERR, based on these various indicators and corresponding management thresholds, and to provide this information as a baseline for determining how such conditions may be changing with time. While sample analysis is still ongoing a few preliminary results and observations are reported here. A final report will be completed once all data have been processed. The results will provide a comprehensive weight-of-evidence basis for evaluating current condition (aka a “state-of-the-SINEER environmental report”) and serve as a quantitative benchmark for tracking any future changes due to either natural or human disturbances. Another goal of the study is to demonstrate its utility as a possible model for assessing the status of condition at other NEERS sites using similar and consistent methods to promote system-wide regional and national comparisons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Investigators at the Cooperative Oxford Laboratory (COL) diagnose and study crustaceans, mollusks, finfish, and a variety of other marine and estuarine invertebrates to assess animal health. This edition updates the Histological Techniques for Marine Bivalve Mollusks manual by Howard and Smith (1983) with additional chapters on molluscan and crustacean techniques. The new edition is intended to serve as a guide for histological processing of shellfish, principally bivalve mollusks and crustaceans. Basically, the techniques included are applicable for histopathological preparation of all marine animals, recognizing however that initial necropsy is unique to each species. Photographs and illustrations are provided for instruction on necropsy of different species to simplify the processing of tissues. Several of the procedures described are adaptations developed by the COL staff. They represent techniques based on principles established for the histopathologic study of mammalian and other vertebrate tissues, but modified for marine and aquatic invertebrates. Although the manual attempts to provide adequate information on techniques, it is also intended to serve as a useful reference source to those interested in the pathology of marine animals. General references and recommended reading listed in the back of the manual will provide histological information on species not addressed in the text.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examined movement patterns of sportfish that were tagged in the northern Indian River Lagoon, Florida, between 1990 and 1999 to assess the degree of fish exchange between an estuarine no-take zone (NTZ) and surrounding waters. The tagged f ish were from seven species: red drum (Sciaenops ocellatus); black drum (Pogonias cromis); sheepshead (Archosargus probatocephalus); common snook (Centropomus undecimalis); spotted seatrout (Cynoscion nebulosus); bull shark (Carcharhinus leucas); and crevalle jack (Caranx hippos). A total of 403 tagged fish were recaptured during the study period, including 65 individuals that emigrated from the NTZ and 16 individuals that immigrated into the NTZ from surrounding waters of the lagoon. Migration distances between the original tagging location and the sites where emigrating fish were recaptured were from 0 to 150 km, and these migration distances appeared to be influenced by the proximity of the NTZ to spawning areas or other habitats that are important to specific life-history stages of individual species. Fish that immigrated into the NTZ moved distances ranging from approximately 10 to 75 km. Recapture rates for sportfish species that migrated across the NTZ boundary suggested that more individuals may move into the protected habitats than move out. These data demonstrated that although this estuarine no-take reserve can protect species from fishing, it may also serve to extract exploitable individuals from surrounding fisheries; therefore, if the no-take reserve does function to replenish surrounding fisheries, then increased egg production and larval export may be more important mechanisms of replenishment than the spillover of excess adults from the reserve into fishable areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Young-of-year (YOY) blue-fish (Pomatomus saltatrix) along the U.S. east coast are often assumed to use estuaries almost exclusively during the summer. Here we present data from 1995 to 1998 indicating that YOY (30–260 mm FL) also use ocean habitats along the coast of New Jersey. An analysis of historical and recent data on northern and southern ocean beaches (0.1–2 m) and the inner continental shelf (5–27 m) during extensive sampling in New Jersey waters from 1995 to 1998 indicated that multiple cohorts occurred (June–August) in every year. When comparable collections of YOY were made in the ocean and in an adjacent estuary, the abundance was 1–2 orders of magnitude greater on ocean beaches during the summer. The YOY were even more abundant in ocean habitats in the fall (September–October), presumably as a result of YOY leaving estuaries to join the coastal migration south. During 1999 and 2000, YOY bluefish were tagged with internal sequential coded wire microtags in order to refine our under-standing of habitat use and movement. Few (0.04%) of the fish tagged on ocean beaches were recaptured; however, 2.2% of the fish tagged in the estuary were recaptured from 2 to 27 days after tagging. Recaptured fish grew quickly (average 1.37 mm FL/d). On ocean beaches YOY fed on a variety of invertebrates and fishes but their diet changed with size. By approximately 80–100 mm FL, they were piscivorous and fed primarily on engraulids, a pattern similar to that reported in estuaries. Based on distribution, abundance, and feeding, both spring- and summer-spawned cohorts of YOY bluefish commonly use ocean habitats. Therefore, attempts to determine factors affecting recruitment success based solely on estuarine sampling may be inadequate and further examination, especially of the contribution of the summer-spawned cohort in ocean habitats, appears warranted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Teeth of 71 estuarine dolphins (Sotalia guianensis) incidentally caught on the coast of Paraná State, southern Brazil, were used to estimate age. The oldest male and female dolphins were 29 and 30 years, respectively. The mean distance from the neonatal line to the end of the first growth layer group (GLG) was 622.4 ±19.1 μm (n=48). One or two accessory layers were observed between the neonatal line and the end of the first GLG. One of the accessory layers, which was not always present, was located at a mean of 248.9 ±32.6 μm (n=25) from the neonatal line, and its interpretation remains uncertain.The other layer, located at a mean of 419.6 ±44.6 μm (n=54) from the neonatal line, was always present and was first observed between 6.7 and 10.3 months of age. This accessory layer could be a record of weaning in this dolphin. Although no differences in age estimates were observed between teeth sectioned in the anterior-posterior and buccal-lingual planes, we recommend sectioning the teeth in the buccal-lingual plane in order to obtain on-center sections more easily. We also recommend not using teeth from the most anterior part of the mandibles for age estimation. The number of GLGs counted in those teeth was 50% less than the number of GLGs counted in the teeth from the median part of the mandible of the same animal. Although no significant difference (P>0.05) was found between the total lengths of adult male and female estuarine dolphins, we observed that males exhibited a second growth spurt around five years of age. This growth spurt would require that separate growth curves be calculated for the sexes. The asymptotic length (TL∞), k, and t0 obtained by the von Bertalanffy growth model were 177.3 cm, 0.66, and –1.23, respectively, for females and 159.6 cm, 2.02, and –0.38, respectively, for males up to five years, and 186.4 cm, 0.53 and –1.40, respectively, for males older than five years. The total weight (TW)/total length (TL) equations obtained for male and female estuarine dolphins were TW = 3.156 × 10−6 × TL 3.2836 (r=0.96), and TW = 8.974 × 10−5 × TL 2.6182 (r=0.95), respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Offshore winter-spawned fishes dominate the nekton of south-eastern United States estuaries. Their juveniles reside for several months in shallow, soft bottom estuarine creeks and bays called primary nursery areas. Despite similarity in many nursery characteristics, there is, between and within species, variability in the occupation of these habitats. Whether all occupied habitats are equally valuable to individuals of the same species or whether most recruiting juveniles end up in the best habitats is not known. If nursery quality varies, then factors controlling variation in pre-settlement fish distribution are important to year-class success. If nursery areas have similar values, interannual variation in distribution across nursery creeks should have less effect on population sizes or production. I used early nursery period age-specific growth and mortality rates of spot (Leiostomus xanthurus) and Atlantic croaker (Micropogonias undulatus)—two dominant estuarine fishes—to assess relative habitat quality across a wide variety of nursery conditions, assuming that fish growth and mortality rates were direct reflections of overall physical and biological conditions in the nurseries. I tested the hypothesis that habitat quality varies for these fishes by comparing growth and mortality rates and distribution patterns across a wide range of typical nursery habitats at extreme ends of two systems. Juvenile spot and Atlantic croaker were collected from 10 creeks in the Cape Fear River estuary and from 18 creeks in the Pamlico Sound system, North Carolina, during the 1987 recruitment season (mid-March–mid-June). Sampled creeks were similar in size, depth, and substrates but varied in salinities, tidal regimes, and distances from inlets. Spot was widely distributed among all the estuarine creeks, but was least abundant in the creeks in middle reaches of both systems. Atlantic croaker occurred in the greatest abundance in oligohaline creeks of both systems. Instantaneous growth rates derived from daily otolith ages were generally similar for all creeks and for both species, except that spot exhibited a short-term growth depression in the upriver Pamlico system creeks—perhaps the result of the long migration distance of this species to this area. Spot and Atlantic croaker from upriver oligohaline creeks exhibited lower mortality rates than fish from downstream polyhaline creeks. These results indicated that even though growth was similar at the ends of the estuaries, the upstream habitats provided conditions that may optimize fitness through improved survival.