72 resultados para Charleston
Resumo:
This cruise report is a summary of a field survey conducted along a portion of the U.S. continental shelf in northwestern Gulf of Mexico (GOM), at navigable depths along the coastline seaward to the shelf break (~100m) from about 89°30' W to 95°28' W longitude, August 8 – 16, 2011 on NOAA Ship Nancy Foster Cruise NF-11-07-RACOW. Synoptic sampling of multiple ecological indicators was conducted at each of 34 stations throughout these waters using a random probabilistic sampling design. The original study design consisted of 50 stations extending from the Mississippi delta all the way to the U.S./Mexican border, but vessel failures precluded sampling at 16 stations within the western-most portion of the study area. At each station samples were collected for the analysis of benthic community structure and composition; concentrations of chemical contaminants in sediments and target demersal biota; sediment toxicity; nutrient and chlorophyll levels in the water column; and other basic habitat characteristics such as salinity, temperature, dissolved oxygen, turbidity, pH, sediment grain size, and organic carbon content. Other indicators, from a human-dimension perspective, were also recorded, including presence of vessels, oil rigs, surface trash, visual oil sheens in sediments or water, marine mammals, or noxious/oily sediment odors. The overall purpose of the survey was to collect data to assess the status of ecosystem condition and potential stressor impacts throughout the region, based on these various indicators and corresponding management thresholds, and to provide this information as a baseline for determining how such conditions may be changing with time. While sample analysis is still ongoing, some preliminary results and observations are reported here. A final report will be completed once all data have been processed.
Resumo:
The Charleston Gyre region is characterized by continuous series of cyclonic eddies that propagate northeastwards before decaying or coalescing with the Gulf Stream south of Cape Hatteras, NC, USA. Over 5 d, chlorophyll-a concentration, zooplankton displacement volume, and zooplankton composition and abundance changed as the eddy moved to the northeast. Surface chlorophyll-a concentration decreased, and zooplankton displacement remained unchanged as the eddy propagated. Zooplankton taxa known to be important dietary constituents of larval fish increased in concentration as the eddy propagated. The concurrent decrease in chlorophyll-a concentration and static zooplankton displacement volume can be explained by initial stimulation of chlorophyll-a concentration by upwelling and nutrient enrichment near the eddy core and to possible grazing as zooplankton with short generation times and large clutch sizes increased in concentration. The zooplankton community did not change significantly within the 5 d that the eddy was tracked, and there was no indication of succession. Mesoscale eddies of the region are dynamic habitats as eddies propagate northeastwards at varying speeds within monthly periods. The abundance of zooplankton important to the diets of larval fish indicates that the region can provide important pelagic nursery habitat for larval fish off the southeast coast of the United States. A month of feeding and growth is more than half the larval duration of most fish spawned over the continental shelf of the southeastern United States in winter.
Resumo:
In March 2006, a dead, male bottlenose dolphin (Tursiops truncatus) was found in the salt marsh in Charleston, South Carolina, United States. During necropsy, an enterolith was found completely obstructing the intestinal lumen. Further examination of the enterolith revealed a stingray spine nidus. Most terrestrial enteroliths are composed primarily of struvite (magnesium ammonium phosphate); however, the majority of the enterolith discovered in the stranded dolphin was composed of calcium phosphate carbonate. This case provides an interesting comparison of the variation in the mineral composition between terrestrial and marine enteroliths.
Resumo:
This cruise report is a summary of a field survey conducted along the continental shelf of the northeastern Gulf of Mexico (GOM), encompassing 70,062 square kilometers of productive marine habitats located between the Mississippi Delta and Tampa Bay, August 13–21, 2010 on NOAA Ship Nancy Foster Cruise NF-10-09-RACOW. Synoptic sampling of multiple ecological indicators was conducted at each of 50 stations throughout these waters using a random probabilistic sampling design. At each station samples were collected for the analysis of benthic community structure and composition; concentrations of chemical contaminants (metals, pesticides, TPHs, PAHs, PCBs, PBDEs) in sediments and target demersal biota; sediment toxicity; nutrient and chlorophyll levels in the water column; and other basic habitat characteristics such as depth, salinity, temperature, dissolved oxygen, turbidity, pH, CDOM fluorescence, sediment grain size, and organic carbon content. Discrete water samples were collected just below the sea surface, in addition to any deeper subsurface depths where there was an occurrence of suspicious CDOM fluorescence signals, and analyzed for total BTEX/TPH and carcinogenic PAHs using immunoassay test kits. Other indicators of potential value from a human-dimension perspective were also recorded, including presence of any vessels, oil rigs, surface trash, visual oil sheens in sediments or water, marine mammals, or noxious/oily sediment odors. The overall purpose of the survey was to collect data to assess the status of ecosystem condition and potential stressor impacts throughout the region, based on these various indicators and corresponding management thresholds, and to provide this information as a baseline for determining how such conditions may be changing with time. In addition to the original project goals, both the scientific scope and general location of this project are relevant to addressing potential ecological impacts of the Deepwater Horizon oil spill. While sample analysis is still ongoing, a few preliminary results and observations are reported here. A final report will be completed once all data have been processed.
Resumo:
Moving ecosystem modeling from research to applications and operations has direct management relevance and will be integral to achieving the water quality and living resource goals of the 2010 Chesapeake Bay Executive Order. Yet despite decades of ecosystem modeling efforts of linking climate to water quality, plankton and fish, ecological models are rarely taken to the operational phase. In an effort to promote operational ecosystem modeling and ecological forecasting in Chesapeake Bay, a meeting was convened on this topic at the 2010 Chesapeake Modeling Symposium (May, 10-11). These presentations show that tremendous progress has been made over the last five years toward the development of operational ecological forecasting models, and that efforts in Chesapeake Bay are leading the way nationally. Ecological forecasts predict the impacts of chemical, biological, and physical changes on ecosystems, ecosystem components, and people. They have great potential to educate and inform not only ecosystem management, but also the outlook and opinion of the general public, for whom we manage coastal ecosystems. In the context of the Chesapeake Bay Executive Order, ecological forecasting can be used to identify favorable restoration sites, predict which sites and species will be viable under various climate scenarios, and predict the impact of a restoration project on water quality.
Resumo:
Colonies of the scleractinian coral Acropora palmata, listed as threatened under the US Endangered Species Act in 2006, have been monitored in Hawksnest Bay, within Virgin Islands National Park, St. John, from 2004 through 2010 by scientists with the US Geological Survey, National Park Service, and the University of the Virgin Islands. The focus has been on documenting the prevalence of disease, including white band, white pox (also called patchy necrosis and white patches), and unidentified diseases (Rogers et al., 2008; Muller et al., 2008). In an effort to learn more about the pathologies that might be involved with the diseases that were observed, samples were collected from apparently healthy and diseased colonies in July 2009 for analysis. Two different microbial assays were performed on Epicentre Biotechnologies DNA swabs containing A. palmata coral mucus, and on water and sediment samples collected in Hawksnest Bay. Both assays are based on polymerase chain reaction (PCR) amplification of portions of the small rRNA gene (16S). The objectives were to determine 1) if known coral bacterial pathogens Serratia marcescens (Acroporid Serratiosis), Vibrio coralliilyticus (temperature-dependent bleaching, White Syndrome), Vibrio shiloi (bleaching, necrosis), and Aurantimonas coralicida (White Plague Type II) were present in any samples, and 2) if there were any differences in microbial community profiles of each healthy, unaffected or diseased coral mucus swab. In addition to coral mucus, water and sediment samples were included to show ambient microbial populations. In the first test, PCR was used to separately amplify the unique and diagnostic region of the 16S rRNA gene for each of the coral pathogens being screened. Each pathogen test was designed so that an amplified DNA fragment could be seen only if the specific pathogen was present in a sample. A positive result was indicated by bands of DNA of the appropriate size on an agarose gel, which separates DNA fragments based on the size of the molecule. DNA from pure cultures of each of the pathogens was used as a positive control for each assay.
Resumo:
Models that help predict fecal coliform bacteria (FCB) levels in environmental waters can be important tools for resource managers. In this study, we used animal activity along with antibiotic resistance analysis (ARA), land cover, and other variables to build models that predict bacteria levels in coastal ponds that discharge into an estuary. Photographic wildlife monitoring was used to estimate terrestrial and aquatic wildlife activity prior to sampling. Increased duck activity was an important predictor of increased FCB in coastal ponds. Terrestrial animals like deer and raccoon, although abundant, were not significant in our model. Various land cover types, rainfall, tide, solar irradiation, air temperature, and season parameters, in combination with duck activity, were significant predictors of increased FCB. It appears that tidal ponds allow for settling of bacteria under most conditions. We propose that these models can be used to test different development styles and wildlife management techniques to reduce bacterial loading into downstream shellfish harvesting and contact recreation areas.
Resumo:
This cruise report is a summary of a field survey conducted within the Sapelo Island National Estuarine Research Reserve (SINERR), located on the Georgia coastline, June 7 – June 13, 2009. Multiple indicators of ecological condition and human dimensions were sampled synoptically at each of 30 stations throughout SINERR using a random probabilistic sampling design. Samples were collected for the analysis of benthic community structure and composition; concentrations of chemical contaminants (metals, pesticides, PAHs, PCBs, PBDEs) in sediments and target demersal biota; nutrient and chlorophyll levels in the water column; bacterial contaminants in the water column; and other basic habitat characteristics such as depth, salinity, temperature, dissolved oxygen, turbidity, total suspended solids, pH, sediment grain size, and organic carbon content. In addition to the fish samples that were collected for analysis of chemical contaminants relative to human-health consumption limits, other human-dimension indicators were sampled as well including presence or absence of fishing gear, vessels, surface trash, and noxious sediment odors. The overall purpose of the survey was to collect data to assess the status of ecosystem condition and potential stressor impacts throughout SINERR, based on these various indicators and corresponding management thresholds, and to provide this information as a baseline for determining how such conditions may be changing with time. While sample analysis is still ongoing a few preliminary results and observations are reported here. A final report will be completed once all data have been processed. The results will provide a comprehensive weight-of-evidence basis for evaluating current condition (aka a “state-of-the-SINEER environmental report”) and serve as a quantitative benchmark for tracking any future changes due to either natural or human disturbances. Another goal of the study is to demonstrate its utility as a possible model for assessing the status of condition at other NEERS sites using similar and consistent methods to promote system-wide regional and national comparisons.
Resumo:
In May 2006, the NOAA National Ocean Service (NOS), in conjunction with the EPA National Health and Environmental Effects Laboratory (NHEERL), conducted an assessment of the status of ecological condition of soft-bottom habitat and overlying waters throughout the mid-Atlantic Bight (MAB) portion of the eastern U.S. continental shelf. The study area encompassed the region from Cape Cod, MA and Nantucket Shoals in the northeast to Cape Hatteras in the south, and was defined using a one nautical mile buffer of the shoreline extended seaward to the shelf break (~100-m depth contour). A total of 50 stations were targeted for sampling using standard methods and indicators applied in prior NOAA coastal studies and EPA’s Environmental Monitoring and Assessment Program (EMAP) and National Coastal Assessment (NCA). A key feature adopted from these studies was the incorporation of a random probabilistic sampling design. Such a design provides a basis for making unbiased statistical estimates of the spatial extent of ecological condition relative to various measured indicators and corresponding thresholds of concern. Indicators included multiple measures of water quality, sediment quality, and biological condition (benthic fauna). Through coordination with the NOAA Fisheries Service/Northeast Fisheries Science Center (NFS/NEFSC), samples of summer flounder (Paralichthys dentatus) also were obtained from 30 winter 2007 bottom-trawl survey stations in overlapping portions of the study area and used for analysis of chemical-contaminant body burdens.
Resumo:
A meeting was convened on February 22-24, 2005 in Charleston, South Carolina to bring together researchers collaborating on the Bottlenose Dolphin Health and Risk Assessment (HERA) Project to review and discuss preliminary health-related findings from captured dolphins during 2003 and 2004 in the Indian River Lagoon (IRL), FL and Charleston (CHS), SC. Over 30 researchers with diverse research expertise representing government, academic and marine institutions participated in the 2-1/2 day meeting. The Bottlenose Dolphin HERA Project is a comprehensive, integrated, multi-disciplinary research program designed to assess environmental and anthropogenic stressors, as well as the health and long-term viability of Atlantic bottlenose dolphins (Tursiops truncatus). Standardized and comprehensive protocols are being used to evaluate dolphin health in the coastal ecosystems in the IRL and CHS. The Bottlenose Dolphin Health and Risk Assessment (HERA) Project was initiated in 2003 by Dr. Patricia Fair at the National Oceanic and Atmospheric Administration/National Ocean Service/Center for Coastal Environmental Health and Biomolecular Research and Dr. Gregory Bossart at the Harbor Branch Oceanographic Institution under NMFS Scientific Research Permit No. 998-1678-00 issued to Dr. Bossart. Towards this end, this study focuses on developing tools and techniques to better identify health threats to these dolphins, and to develop links to possible environmental stressors. Thus, the primary objective of the Dolphin HERA Project is to measure the overall health and as well as the potential health hazards for dolphin populations in the two sites by performing screening-level risk assessments using standardized methods. The screening-level assessment involves capture, sampling and release activities during which physical examinations are performed on dolphins and a suite of nonlethal morphologic and clinicopathologic parameters, to be used to develop indices of dolphin health, are collected. Thus far, standardized health assessments have been performed on 155 dolphins during capture-release studies conducted in Years 2003 and 2004 at the two sites. A major collaboration has been established involving numerous individuals and institutions, which provide the project with a broad assessment capability toward accomplishing the goals and objectives of this project.
Resumo:
Growth, recruitment, and abundance of young-of-the-year (YOY) striped mullet (Mugil cephalus L.) in estuarine habitats in South Carolina from 1998 to 2000 were examined and compared to historical data (1986–91) of growth, recruitment, and abundance. Daily growth increments from the sagittal otoliths of juvenile striped mullet were validated by using fish immersed in oxytetracycline hydrochloride (OTC) for five hours from the Charleston Harbor Estuary system. The distribution of back-calculated birthdates indicated that striped mullet spawn from October to late April and estuarine recruitment occurs from January through May. Juveniles were more abundant in mesohaline and polyhaline salinity regimes but were found throughout the estuary. Juvenile growth after recruitment into the estuary can be described by the relationship Total length (mm) = 0.341 (Age)1.04 (r2=0.741, P=0.001). Growth of juveniles according to the analysis of size-frequency data from historical surveys (1986 to 1991) in the same estuaries gave the relationship Total length (mm) = 8.77 (month)1.12 (r2=0.950, P=0.001). The similarity in the growth curves for both groups of fish suggests that juvenile striped mullet in South Carolina have consistent annual growth during the first year of life.