256 resultados para Atlantic menhaden
Resumo:
The pressures placed on the natural, environmental, economic, and cultural sectors from continued growth, population shifts, weather and climate, and environmental quality are increasing exponentially in the southeastern U.S. region. Our growing understanding of the relationship of humans with the marine environment is leading us to explore new ecosystem-based approaches to coastal management, marine resources planning, and coastal adaptation that engages multiple state jurisdictions. The urgency of the situation calls for coordinated regional actions by the states, in conjunction with supporting partners and leveraging a diversity of resources, to address critical issues in sustaining our coastal and ocean ecosystems and enhancing the quality of life of our citizens. The South Atlantic Alliance (www.southatlanticalliance.org) was formally established on October 19, 2009 to “implement science-based policies and solutions that enhance and protect the value of coastal and ocean resources of the southeastern United States which support the region's culture and economy now and for future generations.” The Alliance, which includes North Carolina, South Carolina, Georgia, and Florida, will provide a regional mechanism for collaborating, coordinating, and sharing information in support of resource sustainability; improved regional alignment; cooperative planning and leveraging of resources; integrated research, observations, and mapping; increased awareness of the challenges facing the South Atlantic region; and inclusiveness and integration at all levels. Although I am preparing and presenting this overview of the South Atlantic Alliance and its current status, there are a host of representatives from agencies within the four states, universities, NGOs, and ongoing southeastern regional ocean and coastal programs that are contributing significant time, expertise, and energy to the success of the Alliance; information presented herein and to be presented in my oral presentation was generated by the collaborative efforts of these professionals. I also wish to acknowledge the wisdom and foresight of the Governors of the four states in establishing this exciting regional ocean partnership. (PDF contains 4 pages)
Resumo:
The bay anchovy occurs along the Atlantic and Gulf of Mexico coasts, from Cape Cod, Massachusetts, to Yucatan, Mexico (Hildebrand 1963), except for the Florida Keys where it is apparently absent (Daly 1970). (PDF contains 22 pages)
Resumo:
Factors affecting the fitness of juvenile salmon are discussed. Although fitness from the genetic point of view is defined as the relative capacity of carriers of a given genotype to transmit their genes to the gene pool of the following generations, growth and survival of individuals are also components of fitness, and are influenced by responses to competition, which is the major topic of this article including implications for management. In order to better understand the relationships of density-dependent survival in Newfoundland, egg depositions were manipulated experimentally in the Freshwater River. Figures demonstrate the relationship between stock (number of eggs per 100 m2 of river) and recruitment (number of smolts per l00 m2 of Atlantic salmon, and also the percentage survival from egg to smolt stage related to potential egg depositions.
Resumo:
Popular articles about the Atlantic salmon (Salmo salar) usually state that ‘the Atlantic salmon is an anadromous species’, e.g. publications by the Atlantic Salmon Federation (North America), Atlantic Salmon Trust (UK), and WWF (World Wildlife Fund), and the life history is depicted as migration of juveniles from fresh water to the marine environment, with a return to where the fish were born as spawning adults. This article reviews the life history tactics of Atlantic salmon in Newfoundland.
Resumo:
Scholars recently derived simple models from published data for the prediction from water temperature of hatching times for the eggs of brown trout (Salmo trutta L.) and Atlantic salmon (Salmo salar L.). A similar model to predict eyeing time for salmon eggs was obtained and used in this study, largely by analogy, to develop equations which might be used to obtain very approximate estimates of eyeing and swim-up times for salmon and brown trout. As the models were based on data for constant temperatures and some of them also had a very inadequate data base, it was desirable that they should be tested, as far as possible, against field and hatchery observations. The present report is a brief summary based on such data as have been obtained to date. None of the data sets were ideal for the purpose and the various inadequacies are discussed later in this report.
Resumo:
This paper summarizes current information on the American shad, Alosa sapidissima, and describes the species and its fishery. Emphasis is placed on (1) life history of the fish, (2) condition of the fishery by State and water areas in 1960 compared to 1896 when the last comprehensive description was made, (3) factors responsible for decline in abundance, and (4) management measures. The shad fishery has changed little over the past three-quarters of a century, except in magnitude of yield. Types of shad-fishing gear have remained relatively unchanged, but many improvements have been made in fishing techniques, mostly to achieve economy. In 1896 the estimated catch was more than 50 million pounds. New Jersey ranked first in production with about 14 million pounds, and Virginia second with 11 million pounds. In 1960 the estimated catch was slightly more than 8 million pounds. Maryland ranked first in production with slightly more than 1.5 million pounds, Virginia second with slightly less than 1.4 million pounds, and North Carolina third with about 1.3 million pounds. Biological and economic factors blamed for the decline in shad abundance, such as physical changes in the environment, construction of dams, pollution, over-fishing, and natural cycles of abundance, are discussed. Also discussed are methods used for the rehabilitation and management of the fishery, such as artificial propagation, installation of fish-passage facilities at impoundments, and fishing regulations. With our present knowledge, we can manage individual shad populations; but, we probably cannot restore the shad to its former peak of abundance.
Resumo:
Genetic analysis, using single locus probes for genomic DNA, revealed that the juvenile Atlantic salmon populations in the Rivers Leven, Rothay and Troutbeck were related but genetically distinct. This genetic differentiation is greater than might be expected (by comparison with other salmon populations in the UK) and it is recommended that no action is taken which might promote genetic exchange between the three rivers. Thus, future fisheries management practices should treat the salmon from each site as separate genetic stocks. It is unlikely that any attempts to encourage fish currently spawning in the River Leven (downstream of Windermere) to utilize the upper catchment will be successful. The faster growth rate of juvenile salmon in the River Leven, compared with the River Rothay, probably results from a difference in temperature between the inflowing streams and the main outflow of Windermere. Precocious sexual maturation of some male parr was found in all three populations but the incidence (13-33%) is well within the range reported for other waters. Because of their enhanced growth rate, it is likely that some of the precocious males in the River Leven were 0+ fish. A very high incidence of hybridization (>18%) between Atlantic salmon and brown/sea trout was found in Troutbeck but not in the other rivers. Mitochondrial DNA analysis of these hybrids revealed them to be the product of several, independent cross-fertilizations involving both sexes of both species. The implications of this finding are discussed in relation to the availability of suitable spawning sites in Troutbeck.