82 resultados para Alaska Railroad.
Resumo:
Alaska plaice, Pleuronectes quadrituberculatus, is one of the major flatfishes in the eastern Bering Sea ecosystem and is most highly concentrated in the shallow continental shelf of the eastern Bering Sea. Annual commercial catches have ranged from less than 1,000 metric tons (t) in 1963 to 62,000 t in 1988. Alaska plaice is a relatively large flatfish averaging about 32 cm in length and 390 g in weight in commercial catches. They are distributed from nearshore waters to a depth of about 100 m in the eastern Bering Sea during summer, but move to deeper continental shelf waters in winter to escape sea ice and cold water temperatures. Being a long-lived species (>30 years), they have a relatively low natural mortality rate estimated at 0.20. Maturing at about age 7, Alaska plaice spawn from April through June on hard sandy substrates of the shelf region, primarily around the 100 m isobath. Prey items primarily include polychaetes and other marine worms. In comparison with other flatfish, Alaska plaice and rock sole, Pleuronectes bilineatus, have similar diets but different habitat preferences with separate areas of peak population density which may minimize interspecific competition. Yellowfin sole, Pleuronectes asper, while sharing similar habitat, differs from these two species because of the variety of prey items in its diet. Competition for food resources among the three species appears to be low. The resource has experienced light exploitation since 1963 and is currently in good condition. Based on the results of demersal trawl surveys and age-structured analyses, the exploitable biomass increased from 1971 through the mid-1980’s before decreasing to the 1997 level of 500,000 t. The recommended 1998 harvest level, Allowable Biological Catch, was calculated from the Baranov catch equation based on the FMSY harvest level and the projected 1997 biomass, resulting in a commercial harvest of 69,000 t, or about 16% of the estimated exploitable biomass.
Resumo:
The worldwide literature on management of spotted seals, Phoca largha, was reviewed and updated, and aerial surveys weref lown in 1992 and 1993 to determine the species' distribution and abundance in U.S. waters. In April, spotted seals were found only in the Bering Sea ice front. In June, they were seen along deteriorating ice floes and fast ice in Norton Sound. Surveys along most of Alaska's western coast in August and September found over 2,500 spotted seals in Kuskokwim Bay and concentrations of 100-400 seals around Nunivak Island, Scammon Bay, Golovnin Bay/Norton Sound, Cape Espenberg/Kotzebue Sound, and Kasegaluk Lagoon. All of these sites have been used by spotted seals in the past. The sum of the highest counts, irrespective of year, was 3,570 seals (CV =0.06). This is not an abundance estimate for all spotted seals in the Bering Sea, because it does not account for animals in the water, and we did not survey the Asian coast and some islands. Also, spotted seals and harbor seals, Phoca vitulina, are too similar in appearance to be identified accurately from the air, so our results probably include a mix of these species where their ranges overlap.
Resumo:
In April 1990, the Steller sea lion, Eumetopias jubatus, was listed as threatened under the U.S. Endangered Species Act by emergency action. Competitive interactions with the billion-dollar Alaska commercial groundfish fisheries have been suggested as one of the possible contributing factors to the Steller sea lion population decline. Since the listing, fisheries managers have attempted to address the potential impacts of the groundfish fisheries on Steller sea lion recovery. In this paper, we review pertinent Federal legislation, biological information on the Steller sea lion decline, changes in the Alaska trawl fishery for walleye pollock, Theragra chalcogramma, since the late 1970's, andpossible interactions between fisheries and sea lions. Using three cases, we illustrate how the listing of Steller sea lions has affected Alaska groundfish fisheries through: I) actions taken at the time of listing designed to limit the potential for directhuman-related sea lion mortality, 2) actions addressing spatial and temporal separation of fisheries from sea lions, and 3) introduction of risk-adverse stock assessment methodologies and Steller sea lion conservation considerations directly in the annual quota-setting process. This discussion shows some of the ways that North Pacific groundfish resource managers have begun to explicitly consider the conservation ofmarine mammal and other nontarget species.
Resumo:
A research submersible was used to delineate the depth distribution of lingcod, Ophiodon elongatus, nests (egg masses) below 30 m. Although nests were not seen deeper than 97 m, behavior and dark coloration distinctive of nest-guarding lingcod were seen as deep as 126 m. Males guarding nests were distinctly colored, i.e., dark with little or no mottling, and most were obviously scarred. Two types of guarding behaviors were observed: 1) Males lying directly on or beside the nest and remaining nearly motionless unless touched and 2) males lying on a sentry post and defending the nest when other fish swam close.
Resumo:
Rockfishes (Sebastes spp.) tend to aggregate near rocky, cobble, or generally rugged areas that are difficult to survey with bottom trawls, and evidence indicates that assemblages of rockfish species may differ between areas accessible to trawling and those areas that are not. Consequently, it is important to determine grounds that are trawlable or untrawlable so that the areas where trawl survey results should be applied are accurately identified. To this end, we used multibeam echosounder data to generate metrics that describe the seafloor: backscatter strength at normal and oblique incidence angles, the variation of the angle-dependent backscatter strength within 10° of normal incidence, the scintillation of the acoustic intensity scattered from the seafloor, and the seafloor rugosity. We used these metrics to develop a binary classification scheme to estimate where the seafloor is expected to be trawlable. The multibeam echosounder data were verified through analyses of video and still images collected with a stereo drop camera and a remotely operated vehicle in a study at Snakehead Bank, ~100 km south of Kodiak Island in the Gulf of Alaska. Comparisons of different combinations of metrics derived from the multibeam data indicated that the oblique-incidence backscatter strength was the most accurate estimator of trawlability at Snakehead Bank and that the addition of other metrics provided only marginal improvements. If successful on a wider scale in the Gulf of Alaska, this acoustic remote-sensing technique, or a similar one, could help improve the accuracy of rockfish stock assessments.
Resumo:
The Age and Growth Program at the Alaska Fisheries Science Center is tasked with providing age data in order to improve the basic understanding of the ecology and fisheries dynamics of Alaskan fish species. The primary focus of the Age and Growth Program is to estimate ages from otoliths and other calcified structures for age-structured modeling of commercially exploited stocks; however, the program has recently expanded its interests to include numerous studies on topics ranging from age estimate validation to the growth and life history of non-target species. Because so many applications rely upon age data and particularly upon assurances as to their accuracy and precision, the Age and Growth Program has developed this practical guide to document the age determination of key groundfish species from Alaskan waters. The main objective of this manual is to describe techniques specific to the age determination of commercially and ecologically important species studied by the Age and Growth Program. The manual also provides general background information on otolith morphology, dissection, and preparation, as well as descriptions of methods used to measure precision and accuracy of age estimates. This manual is intended not only as a reference for age readers at the AFSC and other laboratories, but also to give insight into the quality of age estimates to scientists who routinely use such data.
Resumo:
This synthesis presents a science overview of the major forest management Issues involved in the recovery of anadromous salmonids affected by timber harvest in the Pacific Northwest and Alaska. The issues involve the components of ecosystem-based watershed management and how best to implement them, including how to: Design buffer zones to protect fish habitat while enabling economic timber production; Implement effective Best Management Practices (BMPs) to prevent nonpoint-source pollution; Develop watershed-level procedures across property boundaries to prevent cumulative impacts; Develop restoration procedures to contribute to recovery of ecosystem processes; and Enlist support of private landowners in watershed planning, protection, and restoration. Buffer zones, BMPs, cumulative impact prevention, and restoration are essential elements of what must be a comprehensive approach to habitat protection and restoration applied at the watershed level within a larger context of resource concerns in the river basin, species status under the Endangered Species Act (ESA), and regional environmental and economic issues (Fig. ES. 1). This synthesis 1) reviews salmonid habitat requirements and potential effects of logging; 2) describes the technical foundation of forest practices and restoration; 3) analyzes current federal and non-federal forest practices; and 4) recommends required elements of comprehensive watershed management for recovery of anadromous salmonids.
Resumo:
The impact of recent changes in climate on the arctic environment and its ecosystems appear to have a dramatic affect on natural populations (National Research Council Committee on the Bering Sea Ecosystem 1996) and pose a serious threat to the continuity of indigenous arctic cultures that are dependent on natural resources for subsistence (Peterson D. L., Johnson 1995). In the northeast Pacific, winter storms have intensified and shifted southward causing fundamental changes in sea surface temperature patterns (Beamish 1993, Francis et al. 1998). Since the mid 1970’s surface waters of the central basin of the Gulf of Alaska (GOA) have warmed and freshened with a consequent increase in stratification and reduced winter entrainment of nutrients (Stabeno et al. 2004). Such physical changes in the structure of the ocean can rapidly affect lower trophic levels and indirectly affect fish and marine mammal populations through impacts on their prey (Benson and Trites 2002). Alaskan natives expect continued and perhaps accelerating changes in resources due to global warming (DFO 2006).and want to develop strategies to cope with their changing environment.
Resumo:
The diet of Pacific cod (Gadus macrocephalus) in the area of Pavlof Bay, Alaska, was studied in the early 1980s by Albers and Anderson (1985). They found that the dominant prey species were forage species like pandalid shrimp, capelin (Mallotus villosus), and walleye pollock (Theragra chalcogramma). The shrimp fishery in Pavlof Bay began in 1968 and closed in 1980 because of low shrimp abundance (Ruccio and Worton1). Survey data indicate that, during the period between 1972 and 1997, the abundance of forage species such as pandalid shrimp and capelin declined and higher trophic-level groundfish such as Pacific cod increased. There is a general recognition that a long-term ocean climate shift in the Gulf of Alaska has been partially responsible for the observed reorganization of the community structure (Anderson and Piatt, 1999).
Resumo:
Prey-size selectivity by Steller sea lions (Eumetopias jubatus) is relevant for understanding the foraging behavior of this declining predator, but studies have been problematic because of the absence and erosion of otoliths usually used to estimate fish length. Therefore, we developed regression formulae to estimate fish length from seven diagnostic cranial structures of walleye pollock (Theragra chalcogramma) and Atka mackerel (Pleurogrammus monopterygius). For both species, all structure measurements were related with fork length of prey (r2 range: 0.78−0.99). Fork length (FL) of walleye pollock and Atka mackerel consumed by Steller sea lions was estimated by applying these regression models to cranial structures recovered from scats (feces) collected between 1998 and 2000 across the range of the Alaskan western stock of Steller sea lions. Experimentally derived digestion correction factors were applied to take into account loss of size due to digestion. Fork lengths of walleye pollock consumed by Steller sea lions ranged from 3.7 to 70.8 cm (mean=39.3 cm, SD=14.3 cm, n=666) and Atka mackerel ranged from 15.3 to 49.6 cm (mean=32.3 cm, SD=5.9 cm, n=1685). Although sample sizes were limited, a greater proportion of juvenile (≤20 cm) walleye pollock were found in samples collected during the summer (June−September) on haul-out sites (64% juveniles, n=11 scats) than on summer rookeries (9% juveniles, n=132 scats) or winter (February−March) haul-out sites (3% juveniles, n=69 scats). Annual changes in the size of Atka mackerel consumed by Steller sea lions corresponded to changes in the length distribution of Atka mackerel resulting from exceptionally strong year classes. Considerable overlap (>51%) in the size of walleye pollock and Atka mackerel taken by Steller sea lions and the sizes of these species caught by the commercial trawl fishery were demonstrated.
Resumo:
Lengths of walleye pollock (Theragra chalcogramma) consumed by Steller sea lions (Eumetopias jubatus) were estimated by using allometric regressions applied to seven diagnostic cranial structures recovered from 531 scats collected in Southeast Alaska between 1994 and 1999. Only elements in good and fair condition were selected. Selected structural measurements were corrected for loss of size due to erosion by using experimentally derived condition-specific digestion correction factors. Correcting for digestion increased the estimated length of fish consumed by 23%, and the average mass of fish consumed by 88%. Mean corrected fork length (FL) of pollock consumed was 42.4 ±11.6 cm (range=10.0−78.1 cm, n=909). Adult pollock (FL>45.0 cm) occurred more frequently in scats collected from rookeries along the open ocean coastline of Southeast Alaska during June and July (74% adults, mean FL=48.4 cm) than they did in scats from haul-outs located in inside waters between October and May (51% adults, mean FL=38.4 cm). Overall, the contribution of juvenile pollock (≤20 cm) to the sea lion diet was insignificant; whereas adults contributed 44% to the diet by number and 74% by mass. On average, larger pollock were eaten in summer at rookeries throughout Southeast Alaska than at rookeries in the Gulf of Alaska and the Bering Sea. Overall it appears that Steller sea lions are capable of consuming a wide size range of pollock, and the bulk of fish fall between 20 and 60 cm. The use of cranial hard parts other than otoliths and the application of digestion correction factors are fundamental to correctly estimating the sizes of prey consumed by sea lions and determining the extent that these sizes overlap with the sizes of pollock caught by commercial fisheries.
Resumo:
The effects of seasonal and regional differences in diet composition on the food requirements of Steller sea lions (Eumetopias jubatus) were estimated by using a bioenergetic model. The model considered differences in the energy density of the prey, and differences in digestive efficiency and the heat increment of feeding of different diets. The model predicted that Steller sea lions in southeast Alaska required 45–60% more food per day in early spring (March) than after the breeding season in late summer (August) because of seasonal changes in the energy density of the diets (along with seasonal changes in energy requirements). The southeast Alaska population, at 23,000 (±1660 SD) animals (all ages), consumed an estimated 140,000 (±27,800) t of prey in 1998. In contrast, we estimated that the 51,000 (±3680) animals making up the western Alaska population in the Gulf of Alaska and Aleutian Islands consumed just over twice this amount (303,000 [±57,500] t). In terms of biomass removed in 1998 from Alaskan waters, we estimated that Steller sea lions accounted for about 5% of the natural mortality of gadids (pollock and cod) and up to 75% of the natural mortality of hexagrammids (adult Atka mackerel). These two groups of species were consumed in higher amounts than any other. The predicted average daily food requirement per individual ranged from 16 (±2.8) to 20 (±3.6) kg (all ages combined). Per capita food requirements differed by as much as 24% between regions of Alaska depending on the relative amounts of low–energy-density prey (e.g. gadids) versus high–energy-density prey (e.g. forage fish and salmon) consumed. Estimated requirements were highest in regions where Steller sea lions consumed higher proportions of low–energy-density prey and experienced the highest rates of population decline
Resumo:
Adaptive cluster sampling (ACS) has been the subject of many publications about sampling aggregated populations. Choosing the criterion value that invokes ACS remains problematic. We address this problem using data from a June 1999 ACS survey for rockfish, specifically for Pacific ocean perch (Sebastes alutus), and for shortraker (S. borealis) and rougheye (S. aleutianus) rockfish combined. Our hypotheses were that ACS would outperform simple random sampling (SRS) for S. alutus and would be more applicable for S. alutus than for S. borealis and S. aleutianus combined because populations of S. alutus are thought to be more aggregated. Three alternatives for choosing a criterion value were investigated. We chose the strategy that yielded the lowest criterion value and simulated the higher criterion values with the data after the survey. Systematic random sampling was conducted across the whole area to determine the lowest criterion value, and then a new systematic random sample was taken with adaptive sampling around each tow that exceeded the fixed criterion value. ACS yielded gains in precision (SE) over SRS. Bootstrapping showed that the distribution of an ACS estimator is approximately normal, whereas the SRS sampling distribution is skewed and bimodal. Simulation showed that a higher criterion value results in substantially less adaptive sampling with little tradeoff in precision. When time-efficiency was examined, ACS quickly added more samples, but sampling edge units caused this efficiency to be lessened, and the gain in efficiency did not measurably affect our conclusions. ACS for S. alutus should be incorporated with a fixed criterion value equal to the top quartile of previously collected survey data. The second hypothesis was confirmed because ACS did not prove to be more effective for S. borealis-S. aleutianus. Overall, our ACS results were not as optimistic as those previously published in the literature, and indicate the need for further study of this sampling method.
Resumo:
Shortspine thornyhead (Sebastolobus alascanus) abundance was estimated from 107 video transects at 27 stations recorded from a research submersible in 1991 off southeast Alaska at depths ranging from 165 to 355 m. Numbers of invertebrates in seven major taxa were estimated, as was substrate type. Thornyhead abundance ranged from 0 to 7.5/100 m2, with a mean of 1.22/100 m2, and was positively correlated with depth and amount of hard substrate. Invertebrate abundances were not significantly correlated with numbers of thornyheads. Shortspine thornyhead abundance estimates from this study were several times higher than estimates produced by bottom trawl surveys off southeast Alaska in 1990 and 1993, the two years of survey that encompassed the submersible transects; however, the trend of increasing abundance with depth was similar in the trawl surveys and in the submersible transects, suggesting that trawl surveys systematically underestimate abundance of shortspine thornyheads