724 resultados para fish chromosomes
Resumo:
We analyzed data from National Marine Fisheries Service bottom trawl surveys carried out triennially from 1984 to 1996 in the Gulf of Alaska (GOA). The continental shelf and upper slope (0–500 m) of the GOA support a rich demersal fish fauna dominated by arrowtooth flounder (Atheresthes stomias), walleye pollock (Theragra chalcogramma), Pacific cod (Gadus macrocephalus), Pacific halibut (Hippoglossus stenolepis), and Pacific Ocean perch (Sebastes alutus). Average catch per unit of effort (CPUE) of all groundfish species combined increased with depth and had a significant peak near the shelf break at 150–200 m. Species richness and diversity had significant peaks at 200–300 m. The western GOA was characterized by higher CPUEs and lower species richness and diversity than the eastern GOA. Highest CPUEs were observed in Shelikof Strait, along the shelf break and upper slope south of Kodiak Island, and on the banks and in the gullies northeast of Kodiak Island. Significant differences in total CPUE among surveys suggest a 40% increase in total groundfish biomass between 1984 and 1996. A multivariate analysis of the CPUE of 72 groundfish taxa revealed strong gradients in species composition with depth and from east to west, and a weak but significant trend in species composition over time. The trend over time was associated with increases in the frequency of occurrence and CPUE of at least eight taxa, including skates (Rajidae), capelin (Mallotus villosus), three flatfish species, and Pacific Ocean perch, and decreases in frequency of occurrence and CPUE of several sculpin (Myoxocephalus spp.) species. Results are discussed in terms of spatial and temporal patterns in productivity and in the context of their ecological and management implications.
Resumo:
Intergeneric hybridization between the epinepheline serranids Cephalopholis fulva and Paranthias furcifer in waters off Bermuda was investigated by using morphological and molecular characters. Putative hybrids, as well as members of each presumed parent species, were analyzed for 44 morphological characters and screened for genetic variation at 16 nuclear allozyme loci, two nuclear (n)DNA loci, and three mitochondrial (mt)DNA gene regions. Four of 16 allozyme loci, creatine kinase (CK-B*), fumarase (FH*), isocitrate dehydrogenase (ICDH-S*), and lactate dehydrogenase (LDH-B*), were unique in C. fulva and P. furcifer. Restriction fragments of two nuclear DNA intron regions, an actin gene intron and the second intron in the S7 ribosomal protein gene, also exhibited consistent differences between the two presumed parent species. Restriction fragments of three mtDNA regions—ND4, ATPase 6, and 12S/16S ribosomal RNA—were analyzed to identify maternal parentage of putative hybrids. Both morphological data and nuclear genetic data were found to be consistent with the hypothesis that the putative hybrids were the result of interbreeding between C. fulva and P. furcifer. Mean values of 38 morphological characters were different between presumed parent species, and putative hybrids were intermediate to presumed parent species for 33 of these characters. A principal component analysis of the morphological and meristic data was also consistent with hybridization between C. fulva and P. furcifer. Thirteen of 15 putative hybrids were heterozygous at all diagnostic nuclear loci, consistent with F1 hybrids. Two putative hybrids were identified as post-F1 hybrids based on homozygosity at one nuclear locus each. Mitochondrial DNA analysis showed that the maternal parent of all putative hybrid individuals was C. fulva. A survey of nuclear and mitochondrial loci of 57 C. fulva and 37 P. furcifer from Bermuda revealed no evidence of introgression between the parent species mediated by hybridization.