134 resultados para volume-return relation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The diet and daily ration of the shortfin mako (Isurus oxyrinchus) in the northwest Atlantic were re-examined to determine whether fluctuations in prey abundance and availability are reflected in these two biological variables. During the summers of 2001 and 2002, stomach content data were collected from fishing tournaments along the northeast coast of the United States. These data were quantified by using four diet indices and were compared to index calculations from historical diet data collected from 1972 through 1983. Bluefish (Pomatomus saltatrix) were the predominant prey in the 1972–83 and 2001–02 diets, accounting for 92.6% of the current diet by weight and 86.9% of the historical diet by volume. From the 2001– 02 diet data, daily ration was estimated and it indicated that shortfin makos must consume roughly 4.6% of their body weight per day to fulfill energetic demands. The daily energetic requirement was broken down by using a calculated energy content for the current diet of 4909 KJ/kg. Based on the proportional energy of bluefish in the diet by weight, an average shortfin mako consumes roughly 500 kg of bluefish per year off the northeast coast of the United States. The results are discussed in relation to the potential effect of intense shortfin mako predation on bluefish abundance in the region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a new equation to describe the relation between otolith length (OL) and somatic length (fork length [FL]) of fish for the entire lifespan of the fish. The equation was developed by applying a mathematical smoothing method based on an allometric equation with a constant term for walleye pollock (Theragra chalcogramma) —a species that shows an extended longevity (>20 years). The most appropriate equation for defining the relation between OL and FL was a four-phase allometric smoothing function with three inflection points. The inflection points correspond to the timing of settlement of walleye pollock, changes in sexual maturity, and direction of otolith growth. Allometric smoothing functions describing the relation between short otolith radius and FL, long otolith radius and FL, and FL and body weight were also developed. The proposed allometric smoothing functions cover the entire lifespan of walleye pollock. We term these equations “allometric smoothing functions for otolith and somatic growth over the lifespan of walleye pollock.”

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We tested the hypothesis that larger juvenile sockeye salmon (Oncorhynchus nerka) in Bristol Bay, Alaska, have higher marine-stage survival rates than smaller juvenile salmon. We used scales from returning adults (33 years of data) and trawl samples of juveniles (n= 3572) collected along the eastern Bering Sea shelf during August through September 2000−02. The size of juvenile sockeye salmon mirrored indices of their marine-stage survival rate (e.g., smaller fish had lower indices of marine-stage survival rate). However, there was no relationship between the size of sockeye salmon after their first year at sea, as estimated from archived scales, and brood-year survival size was relatively uniform over the time series, possibly indicating size-selective mortality on smaller individuals during their marine residence. Variation in size, relative abundance, and marine-stage survival rate of juvenile sockeye salmon is likely related to ocean conditions affecting their early marine migratory pathways along the eastern Bering Sea shelf.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study of chemoreception in relation to feeding and other factors involved showed that feeding behavior in shrimps can be triggered by chemical stimuli. However, Penaeus indicus and Metapenaeus dobsoni differ significantly in their chemotactic response to different stimuli.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Shell dimensions (length, height, width) and shell volume were evaluated as estimators of growth for Polymesoda erosa in northern Australia. Each parameter was a good estimator when applied to live weight (r2 values of 76-96 percent), but not to soft tissue weight (wet, dry, or ash-free dry weight) (r2 values of 13-32 percent). The b value for shell volume to weight relationship of clams collected during the dry season (June to October) was signifi cantly different than for those collected in the wet season (February to April).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent research demonstrated significantly lower growth and survival of Bristol Bay sockeye salmon (Oncorhynchus nerka) during odd-numbered years of their second or third years at sea (1975, 1977, etc.), a trend that was opposite that of Asian pink salmon (O. gorbuscha) abundance. Here we evaluated seasonal growth trends of Kvichak and Egegik river sockeye salmon (Bristol Bay stocks) during even- and odd-numbered years at sea by measuring scale circuli increments within each g rowth zone of each major salmon age group between 1955 and 2000. First year scale growth was not significantly different between odd- and even-numbered years, but peak growth of age-2 smolts was significantly higher than age-1. smolts. Total second and third year scale growth of salmon was significantly lower during odd- than during even-numbered years. However, reduced scale growth in odd-numbered years began after peak growth in spring and continued through summer and fall even though most pink salmon had left the high seas by late July (10−18% growth reduction in odd vs. even years). The alternating odd and even year growth pattern was consistent before and after the 1977 ocean reg ime shift. During 1977−2000, when salmon abundance was relatively great, sockeye salmon growth was high during specific seasons compared with that during 1955−1976, that is to say, immediately after entry to Bristol Bay, after peak growth in the first year, during the middle of the second growing season, and during spring of the third season. Growth after the spring peak in the third year at sea was relatively low during 1977−2000. We hypothesize that high consumption rates of prey by pink salmon during spring through mid-July of odd-numbered years, coupled with declining zooplankton biomass during summer and potentially cyclic abundances of squid and other prey, contributed to reduced prey availability and therefore reduced growth of Bristol Bay sockeye salmon during late spring through fall of odd-numbered years.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Twenty-nine verified records of white sharks, Carcharodon carcharias, from British Columbia and Alaska waters (1961–2004) are presented. Record locations ranged from lat. 48°48ʹN to lat. 60°17ʹN, including the northernmost occurrence of a white shark and the first report of this species from the central Bering Sea. White sharks recorded from the study area were generally large, with 95% falling between 3.8 and 5.4 m in length. Mature white sharks of both sexes occur in British Columbia and Alaska waters, although they do not necessarily reproduce there. White sharks actively feed in the study area; their diet is similar to that reported for this species from Washington and northern California waters. Sea surface temperature (SST) concurrent with white shark records from the study area ranged from 16°C to between 6.4°C and 5.0°C, extending the lower extreme of the range of SST from which this species has been previously reported. White shark strandings are rarely reported, yet 16 (55%) of the records in this study are of beached animals; strandings generally occurred later in the year and at lower latitudes than nonstrandings. No significant correlation was found between white shark records in the study area and El Niño events and no records occurred during La Niña events. The data presented here indicate that white sharks are more abundant in the cold waters of British Columbia and Alaska than previous records suggest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two large hydrologic issues face the Kings Basin, severe and chronic overdraft of about 0.16M ac-ft annually, and flood risks along the Kings River and the downstream San Joaquin River. Since 1983, these floods have caused over $1B in damage in today’s dollars. Capturing flood flows of sufficient volume could help address these two pressing issues which are relevant to many regions of the Central Valley and will only be exacerbated with climate change. However, the Kings River has high variability associated with flow magnitudes which suggests that standard engineering approaches and acquisition of sufficient acreage through purchase and easements to capture and recharge flood waters would not be cost effective. An alternative approach investigated in this study, termed On-Farm Flood Flow Capture, involved leveraging large areas of private farmland to capture flood flows for both direct and in lieu recharge. This study investigated the technical and logistical feasibility of best management practices (BMPs) associated with On-Farm Flood Flow Capture. The investigation was conducted near Helm, CA, about 20 miles west of Fresno, CA. The experimental design identified a coordinated plan to determine infiltration rates for different soil series and different crops; develop a water budget for water applied throughout the program and estimate direct and in lieu recharge; provide a preliminary assessment of potential water quality impacts; assess logistical issues associated with implementation; and provide an economic summary of the program. At check locations, we measured average infiltration rates of 4.2 in/d for all fields and noted that infiltration rates decreased asymptotically over time to about 2 – 2.5 in/d. Rates did not differ significantly between the different crops and soils tested, but were found to be about an order of magnitude higher in one field. At a 2.5 in/d infiltration rate, 100 acres are required to infiltrate 10 CFS of captured flood flows. Water quality of applied flood flows from the Kings River had concentrations of COC (constituents of concern; i.e. nitrate, electrical conductivity or EC, phosphate, ammonium, total dissolved solids or TDS) one order of magnitude or more lower than for pumped groundwater at Terranova Ranch and similarly for a broader survey of regional groundwater. Applied flood flows flushed the root zone and upper vadose zone of nitrate and salts, leading to much lower EC and nitrate concentrations to a depth of 8 feet when compared to fields in which more limited flood flows were applied or for which drip irrigation with groundwater was the sole water source. In demonstrating this technology on the farm, approximately 3,100 ac-ft was diverted, primarily from April through mid-July, with about 70% towards in lieu and 30% towards direct recharge. Substantial flood flow volumes were applied to alfalfa, wine grapes and pistachio fields. A subset of those fields, primarily wine grapes and pistachios, were used primarily to demonstrate direct recharge. For those fields about 50 – 75% of water applied was calculated going to direct recharge. Data from the check studies suggests more flood flows could have been applied and infiltrated, effectively driving up the amount of water towards direct recharge. Costs to capture flood flows for in lieu and direct recharge for this project were low compared to recharge costs for other nearby systems and in comparison to irrigating with groundwater. Moreover, the potentially high flood capture capacity of this project suggests significant flood avoidance costs savings to downstream communities along the Kings and San Joaquin Rivers. Our analyses for Terranova Ranch suggest that allocating 25% or more flood flow water towards in lieu recharge and the rest toward direct recharge will result in an economically sustainable recharge approach paid through savings from reduced groundwater pumping. Two important issues need further consideration. First, these practices are likely to leach legacy salts and nitrates from the unsaturated zone into groundwater. We develop a conceptual model of EC movement through the unsaturated zone and estimated through mass balance calculations that approximately 10 kilograms per square meter of salts will be flushed into the groundwater through displacing 12 cubic meters per square meter of unsaturated zone pore water. This flux would increase groundwater salinity but an equivalent amount of water added subsequently is predicted as needed to return to current groundwater salinity levels. All subsequent flood flow capture and recharge is expected to further decrease groundwater salinity levels. Second, the project identified important farm-scale logistical issues including irrigator training; developing cropping plans to integrate farming and recharge activities; upgrading conveyance; and quantifying results. Regional logistical issues also exist related to conveyance, integration with agricultural management, economics, required acreage and Operation and Maintenance (O&M).