72 resultados para snapping turtle
Resumo:
Leatherback turtles (Dermochelys coriacea) are regularly seen off the U.S. West Coast, where they forage on jellyfish (Scyphomedusae) during summer and fall. Aerial line-transect surveys were conducted in neritic waters (<92 m depth) off central and northern California during 1990−2003, providing the first foraging population estimates for Pacific leatherback turtles. Males and females of about 1.1 to 2.1 m length were observed. Estimated abundance was linked to the Northern Oscillation Index and ranged from 12 (coefficient of variation [CV] =0.75) in 1995 to 379 (CV= 0.23) in 1990, averaging 178 (CV= 0.15). Greatest densities were found off central California, where oceanographic retention areas or upwelling shadows created favorable habitat for leatherback turtle prey. Results from independent telemetry studies have linked leatherback turtles off the U.S. West Coast to one of the two largest remaining Pacific breeding populations, at Jamursba Medi, Indonesia. Nearshore waters off California thus represent an important foraging region for the critically endangered Pacific leatherback turtle.
Resumo:
The Kemp’s ridley sea turtle, Lepidochelys kempi, was on the edge of extinction owing to a combination of intense egg harvesting and incidental capture in commercial fishing trawls. Results from a cooperative conservation strategy initiated in 1978 between Mexico and the United States to protect and restore the Kemp’s ridley turtle at the main nesting beach at Rancho Nuevo, Tamaulipas, Mexico are assessed. This strategy appears to be working as there are signs that the species is starting to make a recovery. Recovery indicators include: 1) increased numbers of nesting turtles, 2) increased numbers of 100+ turtle nesting aggregations (arribadas), 3) an expanding nesting season now extending from March to August, and 4) significant nighttime nesting since 2003. The population low point at Rancho Nuevo was in 1985 (706 nests) and the population began to significantly increase in 1997 (1,514 nests), growing to over 4,000 nests in 2004. The size and numbers of arribadas have increased each year since 1983 but have yet to exceed the 1,000+ mark; most arribadas are still 200–800+ turtles.
Resumo:
Fishery observers collected data from 307 tows during 96 trips aboard skimmer trawl vessels in Louisiana’s coastal waters from September 2004 through June 2005 to estimate catch rates of target and nontarget species, including sea turtles (Cheloniidae and Dermochelyidae), by area and season during commercial shrimping operations. About 16,965.7 kg of total catch were recorded during 517.0 hours of fishing operations. Based on weight extrapolations from species composition samples, penaeid shrimp (Penaeidae) dominated the catch at 66%, followed by finfish at 19%, nonpenaeid shrimp crustaceans at 7%, discarded penaeid shrimp at 6%, and debris at 3%. Noncrustacean invertebrates comprised less than 1%. Catch rates in kilograms per hour by category was 21.6 for penaeid shrimp, 6.2 for finfish, 2.2 for nonpenaeid crustaceans, 1.8 for discarded penaeid shrimp, and 0.9 for debris. White shrimp, Litopenaeus setiferus, other penaeid shrimp, and Gulf menhaden, Brevoortia patronus, were the top three dominant species by weight. Seasonally, a higher catch rate was observed from May through August 2005 for penaeid shrimp as compared with the September through December 2004 period. Conversely, the September through December 2004 period experienced a higher catch rate for finfish than during May through August 2005. No sea turtle interactions were documented.
Resumo:
Since 1988 regulations have required U.S. longline fishermen to release all Atlantic white marlin, Tetrapturus albidus. By the late 1990’s, approximately 99% of Atlantic white marlin caught by U.S. recreational fishermen were released. Recent studies using PSAT technology indicate that not all released fish survive and that a minor change in hook type, 0–5° offset circle hooks rather than straight-shank “J” hooks, may have a profound effect on post release mortality. Beginning in 2004, sea turtle mitigation measures have required U.S. longline fishermen to use circle hooks. Estimates of total catch, releases, and post release mortality of Atlantic white marlin caught by U.S. recreational fishermen were made in order to evaluate the potential reduction in mortality that may be realized by requiring the use of circle hooks rather than straight-shank “J” hooks by U.S. recreational fishermen. These estimates were compared to estimates of Atlantic white marlin caught by the U.S. longline fishery
Resumo:
Systematic surveys, along with opportunistic sightings, have provided important information on sea turtle (Cheloniidae and Dermochelydae) distributions, knowledge which can help reduce the risk of harmful human interaction. In 1991 and 1992, the Marine Recreational Fishery Sta- tistics Survey (MRFSS) of the National Ma- rine Fisheries Service, NOAA, provided a unique opportunity to gain additional, synoptic information on the spatial and temporal distribution of sea turtles along the U.S. Atlantic and Gulf of Mexico coasts by asking recreational anglers if they had observed a sea turtle on their fishing trip. During the spring and summer months of those years, as water temperatures warmed, the MRFSS documented an increase in sea turtle sightings in inshore waters and in a northward direction along the U.S. Atlantic Coast and in a westward direction along the northern Gulf of Mexico. This pattern reversed in the late summer and fall months as water temperatures cooled, with sea turtles concentrating along Georgia and both coasts of Florida. Although the MRFSS did not provide species or size composition of sea turtles sighted, and effort varied depending upon location of fishing activity and time of year anglers were queried, it did provide an additional and useful means of ascertaining spatial and temporal distributions of sea turtles along these coasts.
Resumo:
Prawn trawling occurs in most states of Australia in tropical, subtropical, and temperate waters. Bycatch occurs to some degree in all Australian trawl fisheries, and there is pressure to reduce the levels of trawl fishery bycatch. This paper gives a brief overview of the bycatch issues and technological solutions that have been evaluated or adopted in Australian prawn-trawl fi sheries. Turtle excluder devices (TED’s) and bycatch reduction devices (BRD’s) are the principal solutions to bycatch in Australian prawn-trawl fisheries. This paper focuses on a major prawn-trawl fishery of northeastern Australia, and the results of commercial use of TED’s and BRD’s in the Queensland east coast trawl fishery are presented. New industry designs are described, and the status of TED and BRD adoption and regulation is summarized. The implementation of technological solutions to reduce fishery bycatch is assumed generally to assist prawn-trawl fisheries within Australia in achieving legislative requirements for minimal environmental impact and ecological sustainable development.
Resumo:
Mortality of diamondback terrapins, Malaclemys terrapin, in blue crab, Callinectes sapidus, traps has become a controversial bycatch issue in some areas. Traps with turtle excluder devices (TED’s) had increased sublegal (14.5%), legal (32.9%), and total (25.7%) blue crab catch per trap day (CPUE). There were statistically significant differences between total (P=0.0202) and legal (0.0174) CPUE for standard traps and traps with TED’s. The increased catch rates of blue crabs in traps with TED’s may be due to decreased escapement through the entrance f
Resumo:
An observer program of the shark drift gillnet fishery off the Atlantic coast of Florida and Georgia was begun in 1993 to define the fishery and estimate bycatch including bottlenose dolphin, Tursiops truncatus, and sea turtles. Boats in the fishery were 12.2-19.8 m long. Nets used were 275-1,800 m long and 3.2-4.1 m deep. Stretched-mesh sizes used were 12.7-29.9 cm. Fishing trips were usually <18 h and occurred within 30 n.mi. of port. Fishing with an observer aboard occurred between Savannah, Ga., and Jacksonville, Fla., and off Cape Canaveral, Fla. Nets were set at least 3 n.mi. offshore. Numbers of boats in the fishery increased from 5 in 1993 to 11 in 1995, but total trips decreased from 185 in 1994 to 149 in 1995. During 1993-95, 48 observer trips were completed and 52 net sets were observed. No marine mammals were caught and two loggerhead turtles, Caretta caretta, were caught and released alive. A total of 9,270 animals (12 shark, 21 teleost, 4 ray, and 1 sea turtle species) were captured. Blacknose, Carcharhinus acronotus; Atlantic sharpnose, Rhizoprionodon terraenovae; and blacktip shark, C. limbatus), were the dominant sharks caught. King mackerel, Scomberomorus cavalIa; little tunny, Euthynnus alleteratus; and cownose ray, Rhinoptera bonasus, were the dominant bycatch species. About 8.4% of the total catch was bycatch. Of the totals, 9.4% of the sharks and 37.3% ofthe bycatch were discarded.
Resumo:
Assessing the status of widely distributed marine species can prove difficult because virtually every sampling technique has assumptions, limitations, and biases that affect the results of the study. These biases often are overlooked when the biological and nonbiological implications of the results are discussed. In a recent review, Thompson (1988) used mostly unpublished population census data derived from studies conducted by the National Marine Fisheries Service (NMFS) to draw conclusions about the status of Kemp's ridley, Lepidochelys kempi; Atlantic coast green turtles, Chelonia mydas; and the loggerhead sea turtle, Caretta caretta.
Resumo:
Shrimp fishermen trawling in the Gulf of Mexico and south Atlantic inadvertently capture and kill sea turtles which are classified as endangered species. Recent legislation requires the use of a Turtle Excluder Device(TED) which, when in place in the shrimp trawl, reduces sea turtle mortality. The impact of the TED on shrimp production is not known. This intermediate analysis of the TED regulations using an annual firm level simulation model indicated that the average Texas shrimp vessel had a low probability of being an economic success before regulations were enacted. An assumption that the TED regulations resulted in decreased production aggravated this condition and the change in Ending Net Worth and Net Present Value of Ending Net Worth before and after a TED was placed in the net was significant at the 5 percent level. However, the difference in the Internal Rate of Return for the TED and non-TED simulations was not significant unless the TED caused a substantial change in catch. This analysis did not allow for interactions between the fishermen in the shrimp industry, an assumption which could significantly alter the impact of TED use on the catch and earnings of the individual shrimp vessel.
Resumo:
Bycatch can harm marine ecosystems, reduce biodiversity, lead to injury or mortality of protected species, and have severe economic implications for fisheries. On 12 January 2007, President George W. Bush signed the Magnuson-Stevens Fishery Conservation and Management Reauthorization Act of 2006 (MSRA). The MSRA required the U.S. Secretary of Commerce (Secretary) to establish a Bycatch Reduction Engineering Program (BREP) to develop technological devices and other conservation engineering changes designed to minimize bycatch, seabird interactions, bycatch mortality, and post-release mortality in Federally managed fisheries. The MSRA also required the Secretary to identify nations whose vessels are engaged in the bycatch of protected living marine resources (PLMR’s) under specified circumstances and to certify that these nations have 1) adopted regulatory programs for PLMR’s that are comparable to U.S. programs, taking into account different conditions, and 2) established management plans for PLMR’s that assist in the collection of data to support assessments and conservation of these resources. If a nation fails to take sufficient corrective action and does not receive a positive certification, fishing products from that country may be subject to import prohibitions into the United States. The BREP has made significant progress to develop technological devices and other conservation engineering designed to minimize bycatch, including improvements to bycatch reduction devices and turtle excluder devices in Atlantic and Gulf of Mexico trawl fisheries, gillnets in Northeast fisheries, and trawls in Alaska and Pacific Northwest fisheries. In addition, the international provisions of the MSRA have provided an innovative tool through which the United States can address bycatch by foreign nations. However, the inability of the National Marine Fisheries Service to identify nations whose vessels are engaged in the bycatch of PLMR’s to date will require the development of additional approaches to meet this mandate.
Resumo:
In July 2007, a mandatory Federal observer program was implemented to characterize the U.S. Gulf of Mexico penaeid shrimp (Farfantepenaeus aztecus, F. duorarum, and Litopenaeus setiferus) fishery. In June 2008, the program expanded to include the South Atlantic penaeid and rock shrimp, Sicyonia spp., fisheries. Data collected from 10,206 tows during 5,197 sea days of observations were analyzed by geographical area and target species. The majority of tows (~70%) sampled were off the coasts of Texas and Louisiana. Based on total hours towed, the highest concentrated effort occurred off South Texas and southwestern Florida. Gear information, such as net characteristics, bycatch reduction devices, and turtle excluder devices were fairly consistent among areas and target species. By species categories, finfish comprised the majority (≥57%) of the catch composition in the Gulf of Mexico and South Atlantic penaeid shrimp fisheries, while in the South Atlantic rock shrimp fishery the largest component (41%) was rock shrimp. Bycatch to shrimp ratios were lower than reported in previous studies for the Gulf of Mexico penaeid shrimp fishery. These decreased ratios may be attributed to several factors, notably decreased shrimp effort and higher shrimp catch per unit of effort (CPUE) in recent years. CPUE density surface plots for several species of interest illustrated spatial differences in distribution. Hot Spot Analyses for shrimp (penaeid and rock) and bycatch species identified areas with significant clustering of high or low CPUE values. Spatial and temporal distribution of protected species interactions were documented.
Resumo:
Management of marine turtles presents various challenges due to their highly migratory nature, which includes major ontogenetic habitat shifts, seasonal movements between feeding grounds, and migrations to and from breeding grounds. Further, sea turtle spatial distributions often differ in species-specific ways during similar temporal periods. Various approaches combine to give valuable insights into spatial and temporal distributions of sea turtles and provide critical knowledge for understanding and protecting these imperiled species. Here we summarize and synthesize available data that document sea turtle occurrences in waters from the Florida Straits (lat. 24°28´N) north to the latitude of Jacksonville, Fla. (lat. 30°20´ N), including waters up to 150 km offshore, termed Florida’s Atlantic waters for this review. We summarize 951 satellite tracked sea turtles, 288 of which crossed into Florida’s Atlantic waters. All species of sea turtles inhabiting the Atlantic Ocean were found to use Florida Atlantic waters. Sea turtles use Florida’s Atlantic waters year-round, yet distributions of individual species vary seasonally. We provide a current synthesis describing the spatial and temporal distributions of the five sea turtles species using Florida’s Atlantic waters and suggest areas where further study may be warranted.
Resumo:
This project characterized and assessed the condition of coastal water resources in the Dry Tortugas National Park (DRTO) located in the Florida Keys. The goal of the assessment was to: (1) identify the state of knowledge of natural resources that exist within the DRTO, (2) summarize the state of knowledge about natural and anthropogenic stressors and threats that affected these resources, and (3) describe strategies being implemented by DRTO managers to meet their resource management goals. The park, located in the Straits of Florida 113 km (70 miles) west of Key West, is relatively small (269 square kilometers) with seven small islands and extensive shallow water coral reefs. Significant natural resources within DRTO include coastal and oceanic waters, coral reefs, reef fisheries, seagrass beds, and sea turtle and bird nesting habitats. This report focuses on marine natural resources identified by DRTO resource managers and researchers as being vitally important to the Tortugas region and the wider South Florida ecosystem. Selected marine resources included physical resources (geology, oceanography, and water quality) and biological resources (coral reef and hardbottom benthic assemblages, seagrass and algal communities, reef fishes and macro invertebrates, and wildlife [sea turtles and sea-birds]). In the past few decades, some of these resources have deteriorated because of natural and anthropogenic factors that are local and global in scale. To meet mandated goals (Chapter 1), resource managers need information on: (1) the types and condition of natural and cultural resources that occur within the park and (2) the stressors and threats that can affect those resources. This report synthesizes and summarizes information on: (1) the status of marine natural resources occurring at DRTO; and (2) types of stressors and threats currently affecting those resources at the DRTO. Based on published information, the assessment suggests that marine resources at DRTO and its surrounding region are affected by several stressors, many of which act synergistically. Of the nine resource components assessed, one resource category – water quality – received an ecological condition ranking of "Good"; two components – the nonliving portion of coral reef and hardbottom and reef fishes – received a rating of "Caution"; and two components – the biotic components of coral reef and hardbottom substrates and sea turtles – received a rating of "Significant concern" (Table E-1). Seagrass and algal communities and seabirds were unrated for ecological condition because the available information was inadequate. The stressor category of tropical storms was the dominant and most prevalent stressor in the Tortugas region; it affected all of the resource components assessed in this report. Commercial and recreational fishing were also dominant stressors and affected 78% of the resource components assessed. The most stressed resource was the biotic component of coral reef and hardbottom resources, which was affected by 76% of the stressors. Water quality was the least affected; it was negatively affected by 12% of stressors. The systematic assessment of marine natural resources and stressors in the Tortugas region pointed to several gaps in the information. For example, of the nine marine resource components reviewed in this report, the living component of coral reefs and hardbottom resources had the best rated information with 25% of stressor categories rated "Good" for information richness. In contrast, the there was a paucity of information for seagrass and algal communities and sea birds resource components.
Resumo:
Understanding the phase and timing of ontogenetic habitat shifts underlies the study of a species’ life history and population dynamics. This information is especially critical to the conservation and management of threatened and endangered species, such as the loggerhead sea turtle Caretta caretta. The early life of loggerheads consists of a terrestrial egg and hatchling stage, a posthatchling and juvenile oceanic, pelagic feeding stage, and a juvenile neritic, primarily benthic feeding stage. In the present study, novel approaches were applied to explore the timing of the loggerhead ontogenetic shift from pelagic to benthic habitats. The most recent years of somatic growth are recorded as annual marks in humerus cross sections. A consistent growth mark pattern in benthic juvenile loggerheads was identified, with narrow growth marks in the interior of the bone transitioning to wider growth marks at the exterior, indicative of a sharp increase in growth rates at the transitional growth mark. This increase in annual growth is hypothesized to correlate with the ontogenetic shift from pelagic to benthic habitats. Stable isotopes of carbon and nitrogen just interior and exterior to the transitional growth mark, as well as stable isotopes from pelagic and benthic flora, fauna and loggerhead stomach contents, were analyzed to determine whether this transition related to a diet shift. The results clearly indicate that a dietary shift from oceanic/pelagic to neritic/benthic feeding corresponds to a transitional growth mark. The combination of stable isotope analysis with skeletochronology can elucidate the ecology of cryptic life history stages during loggerhead ontogeny.