140 resultados para size tolerance
Resumo:
Rockfish (Sebastes spp.) biomass is difficult to assess with standard bottom trawl or acoustic surveys because of their propensity to aggregate near the seafloor in highrelief areas that are inaccessible to sampling by trawling. We compared the ability of a remotely operated vehicle (ROV), a modified bottom trawl, and a stereo drop camera system (SDC) to identify rockfish species and estimate their size composition. The ability to discriminate species was highest for the bottom trawl and lowest for the SDC. Mean lengths and size distributions varied among the gear types, although a larger number of length measurements could be collected with the bottom trawl and SDC than with the ROV. Dusky (S. variabilis), harlequin (S. variegatus), and northern rockfish (S. polyspinis), and Pacific ocean perch (S. alutus) were the species observed in greatest abundance. Only dusky and northern rockfish regularly occurred in trawlable areas, whereas these two species and many more occurred in untrawlable areas. The SDC was able to resolve the height of fish off the seafloor, and some of the rockfish species were observed only near the seafloor in the acoustic dead zone. This finding is important, in that fish found exclusively in the acoustic dead zone cannot be assessed acoustically. For these species, methods such as bottom trawls, long-lines, or optical surveys using line transect or area swept methods will be the only adequate means to estimate the abundance of these fishes. Our results suggest that the selection of appropriate methods for verifying targets will depend on the habitat types and species complexes to be examined.
Resumo:
We assayed allelic variation at 19 nuclear-encoded microsatellites among 1622 Gulf red snapper (Lutjanus campechanus) sampled from the 1995 and 1997 cohorts at each of three offshore localities in the northern Gulf of Mexico (Gulf). Localities represented western, central, and eastern subregions within the northern Gulf. Number of alleles per microsatellite per sample ranged from four to 23, and gene diversity ranged from 0.170 to 0.917. Tests of conformity to Hardy-Weinberg equilibrium expectations and of genotypic equilibrium between pairs of micro-satellites were generally nonsignificant following Bonferroni correction. Significant genic or genotypic heterogeneity (or both) among samples was detected at four microsatellites and over all microsatellites. Levels of divergence among samples were low (FST ≤0.001). Pairwise exact tests revealed that six of seven “significant” comparisons involved temporal rather than spatial heterogeneity. Contemporaneous or variance effective size (NeV) was estimated from the temporal variance in allele frequencies by using a maximum-likelihood method. Estimates of NeV ranged between 1098 and >75,000 and differed significantly among localities; the NeV estimate for the sample from the northcentral Gulf was >60 times as large as the estimates for the other two localities. The differences in variance effective size could ref lect differences in number of individuals successfully reproducing, differences in patterns and intensity of immigration, or both, and are consistent with the hypothesis, supported by life-history data, that different “demographic stocks” of red snapper are found in the northern Gulf. Estimates of NeV for red snapper in the northern Gulf were at least three orders of magnitude lower than current estimates of census size (N). The ratio of effective to census size (Ne/N) is far below that expected in an ideal population and may reflect high variance in individual reproductive success, high temporal and spatial variance in productivity among subregions or a combination of the two.
Resumo:
Age-based analyses were used to demonstrate consistent differences in growth between populations of Acanthochromis polyacanthus (Pomacentridae) collected at three distance strata across the continental shelf (inner, mid-, and outer shelf) of the central Great Barrier Reef (three reefs per distance stratum). Fish had significantly greater maximum lengths with increasing distance from shore, but fish from all distances reached approximately the same maximum age, indicating that growth is more rapid for fish found on outer-shelf reefs. Only one fish collected from inner-shelf reefs reached >100 mm SL, whereas 38−67% of fish collected from the outer shelf were >100 mm SL. The largest age class of adult-size fish collected from inner and mid-shelf locations comprised 3−4 year-olds, but shifted to 2-year-olds on outer-shelf reefs. Mortality schedules (Z and S) were similar irrespective of shelf position (inner shelf: 0.51 and 60.0%; mid-shelf: 0.48 and 61.8%; outer shelf: 0.43 and 65.1%, respectively). Age validation of captive fish indicated that growth increments are deposited annually, between the end of winter and early spring. The observed cross-shelf patterns in adult sizes and growth were unlikely to be a result of genetic differences between sample populations because all fish collected showed the same color pattern. It is likely that cross-shelf variation in quality and quantity of food, as well as in turbidity, are factors that contribute to the observed patterns of growth. Similar patterns of cross-shelf mortality indicate that predation rates varied little across the shelf. Our study cautions against pooling demographic parameters on broad spatial scales without consideration of the potential for cross-shelf variabil
Resumo:
The main length at first maturity of anchovy Engraulis encrasicolus in Ghanaian waters has been estimated using length-frequency and gonad data sampled between June 1983 and September 1986 off Accra and Tema, Ghana. The length at first maturity of these fish is around 5.7 cm (fork length). The minimum mesh size for rational exploitation of the resource in Ghanaian waters is put at about 20 mm (0.8 inch).
Resumo:
A simple running water method of catfish (Clarias gariepinus) fingerling production in ponds in Northern Cameroon is outlined.
Resumo:
Body size at gonadal maturity is described for females of the slipper lobster (Scyllarides squammosus) (Scyllaridae) and the endemic Hawaiian spiny lobster (Panulirus marginatus) (Palinuridae) based on microscopic examination of histological preparations of ovaries. These data are used to validate several morphological metrics (relative exopodite length, ovigerous condition) of functional sexual maturity. Relative exopodite length (“pleopod length”) produced consistent estimates of size at maturity when evaluated with a newly derived statistical application for estimating size at the morphometric maturation point (MMP) for the population, identified as the midpoint of a sigmoid function spanning the estimated boundaries of overlap between the largest immature and smallest adult animals. Estimates of the MMP were related to matched (same-year) characterizations of sexual maturity based on ovigerous condition — a more conventional measure of functional maturity previously used to characterize maturity for the two lobster species. Both measures of functional maturity were similar for the respective species and were within 5% and 2% of one another for slipper and spiny lobster, respectively. The precision observed for two shipboard collection series of pleopod-length data indicated that the method is reliable and not dependent on specialized expertise. Precision of maturity estimates for S. squammosus with the pleopod-length metric was similar to that for P. marginatus with any of the other measures (including conventional evidence of ovigerous condition) and greatly exceeded the precision of estimates for S. squammosus based on ovigerous condition alone. The two measures of functional maturity averaged within 8% of the estimated size at gonadal maturity for the respective species. Appendage-to-body size proportions, such as the pleopod length metric, hold great promise, particularly for species of slipper lobsters like S. squammosus for which there exist no other reliable conventional morphological measures of sexual maturity. Morphometric proportions also should be included among the factors evaluated when assessing size at sexual maturity in spiny lobster stocks; previously, these proportions have been obtained routinely only for brachyuran crabs within the Crustacea.
Resumo:
The potential for growth overfishing in the white shrimp, Litopenaeus setiferus, fishery of the northern Gulf of Mexico appears to have been of limited concern to Federal or state shrimp management entities, following the cataclysmic drop in white shrimp abundance in the 1940’s. As expected from surplus production theory, a decrease in size of shrimp in the annual landings accompanies increasing fishing effort, and can eventually reduce the value of the landings. Growth overfishing can exacerbate such decline in value of the annual landings. We characterize trends in size-composition of annual landings and other annual fishery-dependent variables in this fishery to determine relationships between selected pairs of these variables and to determine whether growth overfishing occurred during 1960–2006. Signs of growth overfishing were equivocal. For example, as nominal fishing effort increased, the initially upward, decelerating trend in annual yield approached a local maximum in the 1980’s. However, an accelerating upward trend in yield followed as effort continued to increase. Yield then reached its highest point in the time series in 2006, as nominal fishing effort declined due to exogenous factors outside the control of shrimp fishery managers. The quadratic relationship between annual yield and nominal fishing effort exhibited a local maximum of 5.24(107) pounds (≈ MSY) at a nominal fishing effort level of 1.38(105) days fished. However, annual yield showed a continuous increase with decrease in size of shrimp in the landings. Annual inflation-adjusted ex-vessel value of the landings peaked in 1989, preceded by a peak in annual inflation-adjusted ex-vessel value per pound (i.e. price) in 1983. Changes in size composition of shrimp landings and their economic effects should be included among guidelines for future management of this white shrimp
Resumo:
Catch rates and sizes of blue crabs, Callinectes sapidus, were compared in traps with 2.54 cm (1.0 inch), 3.81 cm (1.5 inches), and 5.08 cm (2.0 inches) square mesh, 2.54 by 5.08 cm rectangular mesh, and 3.81 cm hexagonal mesh. Catch of legal blue crabs by number was significantly greater in the traditional hexagonal mesh trap than in all other trap types. Sublegal catch by number was highest (34.1-63.3% of total) in the 2.54 cm and 3.81 cm square mesh and rectangular mesh traps and lowest in the 5.08 cm square mesh trap. The hexagonal mesh trap had significantly lower catch rates of sublegal blue crabs than all other trap types except the 5.08 cm square mesh. Mean size of blue crabs by trap type exhibited an inverse pattern to that shown by catch of sublegal crabs. The most effective trap to maximize legal catch and minimize sublegal catch was the 3.81 cm hexagonal mesh trap followed by the 5.08 cm square mesh trap.
Resumo:
Mortality associated with the incidental catch and release by commercial trollers of two size classes of chinook salmon, Oncorhynchus tshawytscha, was assessed. Observed cumulative mortality 4-6 days after hooking was 18.3 percent for sublegal-sizefish « 66 cm FL) and 19.0 percent for legal-sizefish. Size of fish was not significantly related to mortality; however, when the results were combined with data from a previous experiment, there was a significant inverse relationship between fish length and mortality. Hooking mortality estimates calculated from tagging experiments and observed relative mortality of legal-and sublegal-size fish held in net pens, were used to derive a range for total hooking mortality of 22.0-26.4 percent for sublegal-size chinook salmon and 18.5-26.4 percent for legal-size chinook salmon.
Resumo:
Catch and mesh selectivity of wire-meshed fish traps were tested for eleven different mesh sizes ranging from 13 X 13 mm (0.5 x 0.5") to 76 x 152 mm (3 X 6"). A total of 1,810 fish (757 kg) representing 85 species and 28 families were captured during 330 trap hauls off southeastern Florida from December 1986 to July 1988. Mesh size significantly affected catches. The 1.5" hexagonal mesh caught the most fish by number, weight, and value. Catches tended to decline as meshes got smaller or larger. Individual fish size increased with larger meshes. Laboratory mesh retention experiments showed relationships between mesh shape and size and individual retention for snapper (Lutjanidae), grouper (Serranidae), jack (Carangidae), porgy (Sparidae), and surgeonfish (Acanthuridae). These relationships may be used to predict the effect of mesh sizes on catch rates. Because mesh size and shape greatly influenced catchability, regulating mesh size may provide a useful basis for managing the commercial trap fishery.