79 resultados para resource management


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cambodia’s recent freshwater fishery sector reform, instigated at the top level of government, is one of the country’s most significant contemporary policy developments addressing natural resources management and rural development. Implemented in two main waves, the reforms culminated in the complete removal of inland commercial fishing lots. Yet serious problems still need to be addressed, including reportedly widespread illegal fishing, difficulties in protecting critical habitats, and competition among state agencies over resource management authority. This report summarizes the context of the recent fishery reforms, analyzes challenges and opportunities for policy implementation after the reforms, and details the outcomes of local institutional innovations in Kampong Thom Province, followed by a discussion of the implications for ongoing efforts aimed at reducing resource conflict and building livelihood resilience.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conflict management is an intrinsic element of natural resource management, and becomes increasingly important amid growing pressure on natural resources from local uses, as well as from external drivers such as climate change and international investment. If policymakers and practitioners aim to truly improve livelihood resilience and reduce vulnerabilities of poor rural households, issues of resource competition and conflict management cannot be ignored. This synthesis report summarizes outcomes and lessons from three ecoregions: Lake Victoria, with a focus on Uganda; Lake Kariba, with a focus on Zambia; and Tonle Sap Lake in Cambodia. Partners used a common approach to stakeholder engagement and action research that we call “Collaborating for Resilience”. In each region, partners assisted local stakeholders in developing a shared understanding of risks and opportunities, weighing alternative actions, developing action plans, and evaluating and learning from the outcomes. These experiences demonstrate that investing in capacities for conflict management is practical and can contribute to broader improvements in resource governance.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mangrove, a tidal wetland, is a good example of complex land and water system whose resource attributes is neither fully understood from an ecological perspective nor valued comprehensively in economic terms. With increased ecological and social perception of the functions of wetlands, the utility and relative values will increase. The perception, however, varies from society to society. It must be recognized that mangrove forests differ greatly in local conditions and in their ability to produce a wide variety of economic products. What may be highly productive strategy for one country may have little meaning to its neighbor. Therefore, it becomes essential that from among diversity of potential uses of the mangrove environment, specific uses will have to be decided, and management plan developed on site, or area specific basis. It is therefore necessary to arrive at a balance between the views of the ecologists and economists on the management of mangroves. Biological conservation should encompass resource management in the sense that integrity of the biological and physical attributes of the resource base should be sustained and man-induced management practices should not alter an ecosystem to the extent that biological production is eliminated. Sustained yield management for food, fiber and fuel would serve to sustain local fisheries while generating new economic enterprises. This requires the recognition of mangrove environment as a resource with economic value, and managed according to local conditions and national priorities.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper examines policy processes, policy trends and policy implementation with regards to capture fisheries, the marine environment and Integrated Coastal Management (ICM) in BOBLME countries. Individual country information was analyzed to generate a regional synthesis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As threats to the marine environment continue to remain high, and conventional resource-management techniques have been found wanting, marine protected areas (MPAs) are being seen as a tool to address the abuse and destruction of the environment. This study discusses the social dimensions of MPAs in Tanzania, using the case of the Mafia Island Marine Park and the socioeconomic, political and cultural contexts within which Mafia people live their lives. (54 pp.)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

CONTENTS: Learning insights from the Fisheries Resource Management Project, by Tee-Jay A San Diego. An orientation on the SIAD approach and participatory local development planning, by Elizabeth M. Gonzales. Group-building, production success and the struggle to prevent capture of the resource, by B.K. Sahay, K.P. Singh and S.N. Pandeya. Urban agriculture, water reuse and local economies: case study of coastal riverine Settlements of Ondo State, Nigeria, by Yemi Akegbejo-Samsons. Livelihoods analysis: actual experience from using PRA, by Pham Minh Tam and Trinh Quang Tu. A sustainable livelihoods approach to fisheries development for poverty alleviation in southeastern Vietnam, by Nguyen Van Tu and Nguyen Minh Duc

Relevância:

60.00% 60.00%

Publicador:

Resumo:

CONTENTS: BFAR moves on in Region 6, by Janice N. Tronco. Livelihoods initiatives in Sapian Bay, by Tee-Jay A. San Diego. Improving access to information through Barangay Learning Resource Centers, by Elizabeth M. Gonzales. The Philippines Fisheries Information System, by Agnes C. Solis. The contributions of planning activities in the participatory process, by Rommel P. Guarin. Inter-LGU alliance building: a key to sustaining the Integrated Fisheries and Aquatic Resource Management Council (IFARMC), by Josephine P. Savaris.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the current context of natural resource management, marine protected areas (MPAs) are being widely propagated as an important tool for the conservation of marine and fisheries resources. The International Collective in Support of Fishworkers (ICSF) recently undertook a series of studies on MPAs in India to highlight the various legal, institutional, policy and livelihoods issues that confront fishing and coastal communities. In order to discuss the findings of these case studies and to suggest proposals for livelihood-sensitive conservation and management of coastal and fisheries resources through participatory processes, ICSF organized a two-day workshop on ‘Social Dimensions of Marine Protected Area Implementation in India: Do Fishing Communities Benefit?’ at Chennai on 21-22 January 2009. This publication—the India MPA Workshop Proceedings—contains the prospectus of the workshop, a report of the proceedings and the consensus statement that was reached by organizations and individuals who particapated in the workshop. This publication will be useful for fishworkers, non-governmental organizations, policymakers, trade unions, researchers and others interested in natural resource management and coastal and fishing communities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

For many fish stocks, resource management cannot be based on stock assessment because data are insufficient-a situation that requires alternative approaches to management. One possible approach is to manage data-limited stocks as part of an assemblage and to determine the status of the entire unit by a data-rich indicator species. The utility of this approach was evaluated in analyses of 15 years of commercial and 34 years of recreational logbook data from reef fisheries off the southeastern United States coast. Multivariate statistical analyses successfully revealed three primary assemblages. Within assemblages, however, there was little evidence of synchrony in population dynamics of member species, and thus, no support for the use of indicator species. Nonetheless, assemblages could prove useful as management units. Their identification offers opportunities for implementing management to address such ecological considerations as bycatch and species interrelations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

INTRODUCTION: This report summarizes the results of NOAA's sediment toxicity, chemistry, and benthic community studies in the Chesapeake Bay estuary. As part of the National Status and Trends (NS&T) Program, NOAA has conducted studies to determine the spatial extent and severity of chemical contamination and associated adverse biological effects in coastal bays and estuaries of the United States since 1991. Sediment contamination in U.S. coastal areas is a major environmental issue because of its potential toxic effects on biological resources and often, indirectly, on human health. Thus, characterizing and delineating areas of sediment contamination and toxicity and demonstrating their effect(s) on benthic living resources are viewed as important goals of coastal resource management. Benthic community studies have a history of use in regional estuarine monitoring programs and have been shown to be an effective indicator for describing the extent and magnitude of pollution impacts in estuarine ecosystems, as well as for assessing the effectiveness of management actions. Chesapeake Bay is the largest estuarine system in the United States. Including tidal tributaries, the Bay has approximately 18,694 km of shoreline (more than the entire US West Coast). The watershed is over 165,000 km2 (64,000 miles2), and includes portions of six states (Delaware, Maryland, New York, Pennsylvania, Virginia, and West Virginia) and the District of Columbia. The population of the watershed exceeds 15 million people. There are 150 rivers and streams in the Chesapeake drainage basin. Within the watershed, five major rivers - the Susquehanna, Potomac, Rappahannock, York and James - provide almost 90% of the freshwater to the Bay. The Bay receives an equal volume of water from the Atlantic Ocean. In the upper Bay and tributaries, sediments are fine-grained silts and clays. Sediments in the middle Bay are mostly made of silts and clays derived from shoreline erosion. In the lower Bay, by contrast, the sediments are sandy. These particles come from shore erosion and inputs from the Atlantic Ocean. The introduction of European-style agriculture and large scale clearing of the watershed produced massive shifts in sediment dynamics of the Bay watershed. As early as the mid 1700s, some navigable rivers were filled in by sediment and sedimentation caused several colonial seaports to become landlocked. Toxic contaminants enter the Bay via atmospheric deposition, dissolved and particulate runoff from the watershed or direct discharge. While contaminants enter the Bay from several sources, sediments accumulate many toxic contaminants and thus reveal the status of input for these constituents. In the watershed, loading estimates indicate that the major sources of contaminants are point sources, stormwater runoff, atmospheric deposition, and spills. Point sources and urban runoff in the Bay proper contribute large quantities of contaminants. Pesticide inputs to the Bay have not been quantified. Baltimore Harbor and the Elizabeth River remain among the most contaminated areas in the Unites States. In the mainstem, deep sediment core analyses indicate that sediment accumulation rates are 2-10 times higher in the northern Bay than in the middle and lower Bay, and that sedimentation rates are 2-10 times higher than before European settlement throughout the Bay (NOAA 1998). The core samples show a decline in selected PAH compounds over the past several decades, but absolute concentrations are still 1 to 2 orders of magnitude above 'pristine' conditions. Core data also indicate that concentrations of PAHs, PCBs and, organochlorine pesticides do not demonstrate consistent trends over 25 years, but remain 10 times lower than sediments in the tributaries. In contrast, tri-butyl-tin (TBT) concentrations in the deep cores have declined significantly since it=s use was severely restricted. (PDF contains 241 pages)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The science of fisheries acoustics and its applicability to resource management have evolved over the past several decades. This document provides a basic description of fisheries acoustics and recommendations on using this technology for research and monitoring of fish distributions and habitats within sanctuaries. It also describes recent efforts aimed at applying fisheries acoustics to Gray’s Reef National Marine Sanctuary (GRNMS) (Figure 1). Historically, methods to assess the underwater environment have included net trawls, diver censuses, hook and line, video, sonar and other techniques deployed in a variety of ways. Fisheries acoustics, using active sonar, relies on the physics of sound traveling through water to quantify the distribution of biota in the water column. By sending a signal of a given frequency through the water column and recording the time of travel and the strength of the reflected signal, it is possible to determine the size and location of fish and estimate biomass from the acoustic backscatter. As a fisheries assessment tool, active hydroacoustics technology is an efficient, non-intrusive method of mapping the water column at a very fine spatial and temporal resolution. It provides a practical alternative to bottom and mid-water trawls, which are not allowed at GRNMS. Passive acoustics, which uses underwater hydrophones to record man-made and natural sounds such as fish spawning calls and sounds produced by marine mammals for communication and echolocation, can provide a useful, complementary survey tool. This report primarily deals with active acoustics, although the integration of active and passive acoustics is addressed as well. (PDF contains 32 pages)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Pennekamp Coral Reef State Park was established in 1960 and the Key Largo National Marine Sanctuary in 1975. Field studies, funded by NOAA, were conducted in 1980 - 1981 to determine the state of the coral reefs and surrounding areas in relation to changing environmental conditions and resource management that had occurred over the intervening years. Ten reef sites within the Sanctuary and seven shallow grass and hardbottom sites within the Park were chosen for qualitative and quantitative studies. At each site, three parallel transects not less than 400 m long were run perpendicular to the reef or shore, each 300 m apart. Observations, data collecting and sampling were done by two teams of divers. Approximately 75 percent of the bottom within the 18-m isobath was covered by marine grasses, predominantly turtle grass. The general health of the seagrasses appeared good but a few areas showed signs of stress. The inner hardbottom of the Park was studied at the two entrances to Largo Sound. Though at the time of the study the North Channel hardbottom was subjected to only moderate boat traffic, marked changes had taken place over the past years, the most obvious of which was the loss of the extensive beds of Sargassum weed, one of the most extensive beds of this alga in the Keys. Only at this site was the green alga Enteromorpha encountered. This alga, often considered a pollution indicator, may denote the effects of shore run off. The hardbottom at South Channel and the surrounding grass beds showed signs of stress. This area bears the heaviest boat traffic within the Park waters causing continuous turbidity from boat wakes with resulting siltation. The offshore hardbottom and rubble areas in the Sanctuary appeared to be in good health and showed no visible indications of deterioration. Damage by boat groundings and anchors was negligible in the areas surveyed. The outer reefs in general appear to be healthy. Corals have a surprising resiliency to detrimental factors and, when conditions again become favorable, recover quickly from even severe damage. It is, therefore, a cause for concern that Grecian Rocks, which sits somewhat inshore of the outer reef line, has yet to recover from die-off in 1978. The slow recovery, if occurring, may be due to the lower quality of the inshore waters. The patch reefs, more adapted to inshore waters, do not show obvious stress signs, at least those surveyed in this study. It is apparent that water quality was changing in the keys. Water clarity over much of the reef tract was observed to be much reduced from former years and undoubtedly plays an important part in the stresses seen today over the Sanctuary and Park. (PDF contains 119 pages)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This document represents a pilot effort to map social change in the coastal United States—a social atlas characterizing changing population, demographic, housing, and economic attributes. This pilot effort focuses on coastal North Carolina. The impetus for this project came from numerous discussions about the usefulness and need for a graphic representation of social change information for U.S. coastal regions. Although the information presented here will be of interest to a broad segment of the coastal community and general public, the intended target audience is coastal natural resource management professionals, Sea Grant Extension staff, urban and regional land-use planners, environmental educators, and other allied constituents interested in the social aspects of how the nation’s coasts are changing. This document has three sections. The first section provides background information about the project. The second section features descriptions of social indicators and depictions of social indicator data for 1970, 1980, 1990, and 2000, and changes from 1970 to 2000 for all North Carolina coastal counties. The third section contains three case studies describing changes in select social attributes for subsets of counties. (PDF contains 67 pages)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Executive Summary: Observations show that warming of the climate is unequivocal. The global warming observed over the past 50 years is due primarily to human-induced emissions of heat-trapping gases. These emissions come mainly from the burning of fossil fuels (coal, oil, and gas), with important contributions from the clearing of forests, agricultural practices, and other activities. Warming over this century is projected to be considerably greater than over the last century. The global average temperature since 1900 has risen by about 1.5ºF. By 2100, it is projected to rise another 2 to 11.5ºF. The U.S. average temperature has risen by a comparable amount and is very likely to rise more than the global average over this century, with some variation from place to place. Several factors will determine future temperature increases. Increases at the lower end of this range are more likely if global heat-trapping gas emissions are cut substantially. If emissions continue to rise at or near current rates, temperature increases are more likely to be near the upper end of the range. Volcanic eruptions or other natural variations could temporarily counteract some of the human-induced warming, slowing the rise in global temperature, but these effects would only last a few years. Reducing emissions of carbon dioxide would lessen warming over this century and beyond. Sizable early cuts in emissions would significantly reduce the pace and the overall amount of climate change. Earlier cuts in emissions would have a greater effect in reducing climate change than comparable reductions made later. In addition, reducing emissions of some shorter-lived heat-trapping gases, such as methane, and some types of particles, such as soot, would begin to reduce warming within weeks to decades. Climate-related changes have already been observed globally and in the United States. These include increases in air and water temperatures, reduced frost days, increased frequency and intensity of heavy downpours, a rise in sea level, and reduced snow cover, glaciers, permafrost, and sea ice. A longer ice-free period on lakes and rivers, lengthening of the growing season, and increased water vapor in the atmosphere have also been observed. Over the past 30 years, temperatures have risen faster in winter than in any other season, with average winter temperatures in the Midwest and northern Great Plains increasing more than 7ºF. Some of the changes have been faster than previous assessments had suggested. These climate-related changes are expected to continue while new ones develop. Likely future changes for the United States and surrounding coastal waters include more intense hurricanes with related increases in wind, rain, and storm surges (but not necessarily an increase in the number of these storms that make landfall), as well as drier conditions in the Southwest and Caribbean. These changes will affect human health, water supply, agriculture, coastal areas, and many other aspects of society and the natural environment. This report synthesizes information from a wide variety of scientific assessments (see page 7) and recently published research to summarize what is known about the observed and projected consequences of climate change on the United States. It combines analysis of impacts on various sectors such as energy, water, and transportation at the national level with an assessment of key impacts on specific regions of the United States. For example, sea-level rise will increase risks of erosion, storm surge damage, and flooding for coastal communities, especially in the Southeast and parts of Alaska. Reduced snowpack and earlier snow melt will alter the timing and amount of water supplies, posing significant challenges for water resource management in the West. (PDF contains 196 pages)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Executive Summary: The marine environment plays a critical role in the amount of carbon dioxide (CO2) that remains within Earth’s atmosphere, but has not received as much attention as the terrestrial environment when it comes to climate change discussions, programs, and plans for action. It is now apparent that the oceans have begun to reach a state of CO2 saturation, no longer maintaining the “steady-state” carbon cycle that existed prior to the Industrial Revolution. The increasing amount of CO2 present within the oceans and the atmosphere has an effect on climate and a cascading effect on the marine environment. Potential physical effects of climate change within the marine environment, including ocean acidification, changes in wind and upwelling regimes, increasing global sea surface temperatures, and sea level rise, can lead to dramatic, fundamental changes within marine and coastal ecosystems. Altered ecosystems can result in changing coastal economies through a reduction in marine ecosystem services such as commercial fish stocks and coastal tourism. Local impacts from climate change should be a front line issue for natural resource managers, but they often feel too overwhelmed by the magnitude of this issue to begin to take action. They may not feel they have the time, funding, or staff to take on a challenge as large as climate change and continue to not act as a result. Already, natural resource managers work to balance the needs of humans and the economy with ecosystem biodiversity and resilience. Responsible decisions are made each day that consider a wide variety of stakeholders, including community members, agencies, non-profit organizations, and business/industry. The issue of climate change must be approached as a collaborative effort, one that natural resource managers can facilitate by balancing human demands with healthy ecosystem function through research and monitoring, education and outreach, and policy reform. The Scientific Expert Group on Climate Change in their 2007 report titled, “Confronting Climate Change: Avoiding the Unmanageable and Managing the Unavoidable” charged governments around the world with developing strategies to “adapt to ongoing and future changes in climate change by integrating the implications of climate change into resource management and infrastructure development”. Resource managers must make future management decisions within an uncertain and changing climate based on both physical and biological ecosystem response to climate change and human perception of and response to the issue. Climate change is the biggest threat facing any protected area today and resource managers must lead the charge in addressing this threat. (PDF has 59 pages.)