148 resultados para juvenile offender
Resumo:
Population assessments seldom incorporate habitat information or use previously observed distributions of fish density. Because habitat affects the spatial distribution of fish density and overall abundance, the use of habitat information and previous estimates of fish density can produce more precise and less biased population estimates. In this study, we describe how poststratification can be applied as an unbiased estimator to data sets that were collected under a probability sampling design, typical of many multispecies trawl surveys. With data from a multispecies survey of juvenile flatfish, we show how poststratification can be applied to a data set that was not collected under a probability sampling design, where both the precision and the bias are unknown. For each of four species, three estimates of total abundance were compared: 1) unstratified; 2) poststratified by habitat; and 3) poststratified by habitat and fish density (high fish density and low fish density) in nearby years. Poststratification by habitat gave more precise and (or) less design-biased estimates than an unstratified estimator for all species in all years. Poststratification by habitat and fish density produced the most precise and representative estimates when the sample size in the high fish-density and low fish-density strata were sufficient (in this study, n≥20 in the high fish-density stratum, n≥9 in the low fish-density stratum). Because of the complexities of statistically testing the annual stratified data, we compared three indices of abundance for determining statistically significant changes in annual abundance. Each of the indices closely approximated the annual differences of the poststratified estimates. Selection of the most appropriate index was dependent upon the species’ density distribution within habitat and the sample size in the different habitat areas. The methods used in this study are particularly useful for estimating individual species abundance from multispecies surveys and for retrospective st
Resumo:
Otoliths of larval and juvenile fish provide a record of age, size, growth, and development (Campana and Neilson, 1985; Thorrold and Hare, 2002). However, determining the time of first increment formation in otoliths (Campana, 2001) and assessing the accuracy (deviation from real age) and precision (repeatability of increment counts from the same otolith) of increment counts are prerequisites for using otoliths to study the life history of fish (Campana and Moksness, 1991). For most fish species, first increment deposition occurs either at hatching, a day after hatching, or after first feeding and yolksac absorption (Jones, 1986; Thorrold and Hare, 2002). Increment deposition before hatching also occurs (Barkmann and Beck, 1976; Radtke and Dean, 1982). If first increment deposition does not occur at hatching, the standard procedure is to add a predetermined number to increment counts to estimate fish age (Campana and Neilson, 1985).
Resumo:
Light traps are one of a number of different gears used to sample pelagic larval and juvenile fishes. In contrast to conventional towed nets, light traps primarily collect larger size classes, including settlement-size larvae (Choat et al., 1993; Hickford and Schiel, 1999 ; Hernandez and Shaw, 2003), and, therefore, have become important tools for discerning recruitment dynamics (Sponaugle and Cowen, 1996; Wilson, 2001). The relative ease with which multiple synoptic light trap samples can be taken means that larval distribution patterns can be mapped with greater spatial resolution (Doherty, 1987). Light traps are also useful for sampling shallow or structurally complex habitats where towed nets are ineffective or prohibited (Gregory and Powles, 1985; Brogan, 1994; Hernandez and Shaw, 2003).
Resumo:
In 2001, a research submersible was used to survey seafloor habitat and associated benthos in the northeastern Gulf of Alaska. One inspected site had a uniform sand-silt substrate, punctuated by widely spaced (10–20 m apart) boulders. Two-thirds of the boulders had sponge, Aphrocallistes sp., colonies. Eighty-two juvenile (5–10 cm) red rockfish (Sebastes sp.) were also observed during the dive, and all of these fish were closely associated with the sponges. No juvenile red rockfish were seen in proximity to boulders without sponges, nor were any observed on the sand-silt substrate between boulders.
Resumo:
A fishery-independent assessment of juvenile coastal shark populations in U.S. waters of the northeast Gulf of Mexico was conducted using two methods: gillnets and longlines. Surveys were conducted monthly during April–October in two fixed sampling areas from 1996 to 1998. The Atlantic sharpnose shark, Rhizoprionodon terraenovae, and the blacktip shark, Carcharhinus limbatus, were the most common species captured with either longlines or gillnets. An additional 14 shark species were captured, and juvenile indices of abundance were developed for 8 species with gillnets and 6 species of sharks with longlines. Trends in catch-per-unit-effort were found to vary depending on species. Length-frequency information revealed that the majority of sharks captured were juveniles. Given the direct relationship between stock and recruitment for sharks, continued monitoring of juvenile abundance will aid in determining the strength of the parental stock size and for predicting future population strength.
Resumo:
Red snapper, Lutjanus campechanus, is subject to significant overfishing in U.S. Gulf of Mexico waters, and regulations are being implemented to reduce fishing mortality and restore them to a 20% spawning potential ratio by the year 2009. One source of mortality that must be reduced to achieve this goal is the incidental capture ofjuvenile red snappers in shrimp, Penaeus spp., trawls. NOAA's National Marine Fisheries Service is conducting research to develop shrimp trawl modifications to reduce the snapper bycatch. An important part of this research is the study of juvenile red snapper behavior on commercial shrimp grounds and in relation to trawling gear. An area of high juvenile red snapper abundance was identified off the coast of Mississippi. Most snappers were observed around structures or objects on the bottom which they appeared to use for refuge or orientation. Those ranging over barren bottom had no apparent point of orientation. When encountered by shrimp trawls, most juvenile snappers rose above the trawl footrope and fell back into the trawl. These observations have directed research toward modifying shrimp trawls to release juvenile red snappers after entry, rather than preventing them from entering a shrimp trawl.
Resumo:
Extensive mark-recapture studies using internal ferromagnetic tags have been conducted on Atlantic menhaden, Brevoortia tyrannus, and Gulf menhaden, B. patronus. From 1966 through 1969, 1,066,357 adult Atlantic menhaden were tagged; subsequently, from 1970 through 1987, 428,272 juveniles of this species were tagged. Similarly, from 1969 through 1971, 75,673 adult Gulf menhaden were tagged; concurrently from 1970 through 1985, 236,936 juveniles were tagged and released. This report provides an overview of the history of the tagging program, methodologies for both release and recovery activities, a summary of release areas and number of fish tagged within each area, and a review of assumptions necessary for the analysis of this type of mark-recovery data. The resulting data sets have proven to be highly useful for a variety of analyses ranging from determination of migratory patterns and population structure to estimating mortality rates. The relatively wide range of acceptance of tagging results by laymen, industry, and analysts alike have made these data extremely useful for management-oriented analyses.
Resumo:
ABSTRACT TRANSCRIBED FROM ENGLE'S PH.D. ORAL DEFENSE PAMPHLET: The natural history of juvenile California spiny lobster, Panulirus interruptus (Randall), was investigated, with primary emphasis placed on ascertaining juvenile habitats, determining juvenile growth rates and component growth processes, and evaluating ecological and behavioral phenomena associated with juvenile survival and growth. Habitat surveys of island and mainland localities throughout southern and lower California revealed that small, greenish juveniles typically inhabit crevices or temporary burrows in 0-4m deep, wave-swept rocky habitats covered by dense beds of surf grass, Phyllospadix torreyi S. Watson. Phyllospadix beds were more abundant on gradually sloping rocky mainland beaches than on steeply sloping island shores. Phyllospadix abundance was positively correlated with P. interruptus abundance; however, at Santa Catalina Island, the Phyllospadix habitat was not extensive enough to be the sole lobster nursery. In laboratory tests, puerulus larvae and early juveniles chose Phyllospadix over rubble rocks or broad-bladed kelp, but did not consistently prefer Phyllospadix over reticulate algae. Ecology, growth, and behavior of juvenile P. interruptus inhabiting a discrete Phyllospadix habitat at Bird Rock, Santa Catalina Island, were investigated from October 1974 through December 1976 by means of frequent scuba surveys. Pueruli settled from June to November. Peak recruitment occurred from July to September, when seasonal temperatures were maximal. Settled larvae were approximately one year old. Juvenile growth was determined by size-frequency, single molt increment, mark-recapture, and laboratory culture studies. Carapace length vs. wet weight relationships fit standard power curve equations. Bird Rock juveniles grew from 7 to 32mm CL in 10-11 molts and from 32 to 56mm CL in 5-6 molts during their first and second benthic years, respectively. Growth rates were similar for males and females. Juveniles regenerating more than two limbs grew less per molt than intact lobsters. Long-term growth of laboratory-reared juveniles was 20% less than that of field lobsters. Growth component multiple regression analyses demonstrated that molt increment was directly proportional to premolt size and temperature for age 1+ lobsters. Molt frequency was inversely proportional to size and directly proportional to temperature. Temperature affected age 2+ lobsters similarly, but molt increment was independent of size, and molt frequency declined at a different rate. Juvenile growth rates more than doubled during warm water months compared to cold water months, primarily because of increased molt frequency. Based on results from this study and from previous investigations, it is estimated that P. interruptus males and females become sexually mature by ages 4 and 5 years, respectively, and that legai size is reached by 7 or 8 years of age. Juvenile P. interruptus activity patterns and foraging behavior were similar to those of adults, except that juvenile home ranges were proportionally smaller, and small juveniles were apparently not attracted to distant food. Small mollusks, abundant in Phyllospadix habitats, were the major food items. Size-dependent predation by fish and octopus apparently caused the considerable juvenile mortality observed at Bird Rock. Juveniles approaching 2 years of age gathered in mixed size-class aggregations by day and foraged beyond the grass beds at night. In autumn, these juveniles migrated to deeper habitats, coincident with new puerulus settlement in the Phyllospadix beds. Based on strong inferences from the results, it is proposed that size-dependent predation is the most important factor determining the !ife history strategy of juvenile P. interruptus. Life history tactics promoting rapid growth apparently function dually in reducing the period of high vulnerability to predation and decreasing the time required to reach sexual maturity. The Phyllospadix habitat is an excellent lobster nursery because it provides shelter from predators and possesses abundant food resources for sustaining optimum juvenile growth rates in shallow, warm water.