65 resultados para actual yield
Resumo:
A general model for yield-per-recruit analysis of rotational (periodic) fisheries is developed and applied to the sea scallop (Placopecten magellanicus) fishery of the northwest Atlantic. Rotational fishing slightly increases both yield- and biomass-per-recruit for sea scallops at FMAX. These quantities decline less quickly when fishing mortality is increased beyond FMAX than when fishing is at a constant rate. The improvement in biomass-per-recruit appears to be nearly independent of the selectivity pattern but increased size-at-entry can reduce or eliminate the yield-per-recruit advantage of rotation. Area closures and rotational fishing can cause difficulties with the use of standard spatially averaged fishing mortality metrics and reference points. The concept of temporally averaged fishing mortality is introduced as one that is more appropriate for sedentary resources when fishing mortality varies in time and space.
Resumo:
This report presents an analysis of existing information on fisheries of shad and shrimp. It explains the use of Schaefer model and based on this and other available information, the author suggests the measures to be implemented for a better management of these resources.
Resumo:
MSY per recruit of Tenualosa ilisha in the Meghna river was predicted as 112 g per recruit at the F(msy)=0.6/yr and at T(c)=0.6/yr. But Y/R=95 g per recruit was obtained at the existing fishing level, F=1.14/yr and at T(c)=0.6/yr. Existing F level was nearly double than the F(msy) level. Fishing pressure should be reduced immediately from F=1.14/yr to F(msy)=0.6/yr. F(msy)=1.14/yr was the same at first capture, T(c)=1.0, 1.2 and 1.4/yr, and MSY could be obtained as 142 g, 162 g and 176 g per recruit respectively. It is easier to change the first capture age (Tc) rather than changing off level. So, hilsa fishery manager may adopt F(msy)=1.14/yr while age at first capture must be increased from T(c)=0.6/yr (3 cm size group) to T(c)=1.4/yr (25 cm size group), by which 1.8 times production could be increased than the present production. MSY also possible to obtain as 201 g and 210 g per recruit at F(msy)=2.0/yr and 4.0/yr at T(c)=1.7/yr and 1.9/yr respectively. Under both the situations, hilsa production could be increased 2 times than the present production. To obtain the MSY=210 g per recruit the fishing level could be increased up to F=4.0/yr at T(c)=1.9/yr (34 cm size group). Economic point of view, hilsa fishery managers may choose to obtain the economic MSY as 201 g per recruit at F(msy)=2.0/yr and T(c)=1.7yr (31 cm size group) in the Meghna river of Bangladesh.
Resumo:
A summary of the shrimp fishery history as well as the most important recommendations for the period 1977-1990 is presented. During the last years the catch rates have decreased. Although many possible causes can be appointed, such as, weather conditions and increase of effort, there is no clear explanation for it. A relationship between catch rates in the main period of recruitment (January to March) and the level of recruitment of the same year was established. Based on this relationship, the total annual catch is predicted for the level of fishing mortality chosen. Fishing mortality is estimated as 2.28 yearˉ¹ and a gradual reduction of fishing effort is recommended until 2.17 yearˉ¹ calculated as F(sub)0.1.
Resumo:
Analysis of the length-frequency data on Copadichromis likomae (Cichlidae) from Lake Niassa, Mozambique, suggests an asymptotic length of SL∞=14 cm associated with a K value of 0.93 yearˉ¹. Total and natural mortalities were estimated as 3.2 yearˉ¹ and 1.9 yearˉ¹, respectively. Yield-per-recruit analysis suggests that E=0.36 in this fishery.
Resumo:
(GIFT) (Oreochromis niloticus) and Silver barb (Barbodes gonionotus) in rice fields and their
effects on the yield of rice was carried out in nine experimental rice plots. Three
treatments viz., treatment-1 with 0. niloticus (T1), treatment-2 with B. gonionotus (T2) and
treatment- 3 was kept as control (T3, without fish) were used in this study. Fertilizers
such as, Urea (178 kg ha-1), T.S.P (125 kg ha-1) and M.P. (67 kg ha-1) were applied in each
treatment. The fishes were stocked @ 6250 ha·1 and the experiment was continued for a
period of 107 days.
The values of water quality parameters such as, water temperature, dissolved oxygen,
pH and chlorophyll-a were found within suitable level. Between the two species, higher
specific growth rate was recorded in 0. niloticus than that of B. gonionotus. But B.
gonionotus showed much higher survival (72%) than that of 0. niloticus (35%). Similar to
survival, higher production (244 kg ha-1) and income (Tk. 6399 ha-1) were recorded in B.
gonionotus than those of 0. niloticus (142.8 kg ha'1 and Tk. 2137 ha-1). Significant
differences (p
Resumo:
Effect of water depth on recovery rate, growth performance and fish yield of GIFT in the rice-fish production systems was studies in experimental plots of 123 m2 with a pond refuge of I meter deep which covered 10% of the total land area. Mortality rate of fish was very low ranging from 0.81-1.63%. However, at harvest, recovery rate ranged from 76.69-82.93% with the highest recovery at 11-15 em of water depth. Significantly the highest absolute growth (99.97) and specific growth rate (2.42%) were found at 21-25 cm water depth. The same treatment also produced significantly higher fish yield (909.76 kg/ha) although statistically similar to the fish yield (862.60 kg/ha) obtained at ll-15 em of water depth. Results also suggested that higher water depth can produce bigger fish but no significant effects of water depth was found on fish yield in the treatments 11-15 cm and 21-25 cm water depths of this experiment.
Resumo:
The paper deals with the average yield of four spp of prawns viz. Metapenaeus dobsoni, Metapenaeus affinis, Parapenaeopsis stylifera and Penaeus indicus on conversion to peeled and deveined (PD), cooked and peeled (CP) and head less shell on (HL) forms in the different months of a year and the likely variations observed in the average yield.
Resumo:
Observations (76 nos) on height-length and whole weight-meat weight relations of mussels (Perna viridis), both wild and cultured were made. From the length of mussel the height can be worked out by the equations (logarithmic scale), 1. y = 0.360+0.988 x for wild; 2. y = 0.334+1.011 x for cultured, where x is the length (cm) and y is the height (cms). So also to any height the corresponding meat weight can be obtained by the regression equation. log w=-0.8178+1.9769 log H for wild variety (1) log w=-1.3049+2.8385 log H for culture-variety (2) where w is the meat weight (g) and H is the height (cm) of the mussel. Fourteen observations on size weight measurements of dams were made. The yield varied from 8.9 to 13%. The length-height relationship worked out for clams (Villorita sp) is y=0.485+1.005 x for length x and height y.
Resumo:
Sixty one observations on length-breadth and whole weight-meat weight relations of India crab (Scylla serrata) were made. From the length of crab (cm) the whole weight (gm) can be computed by the equation: log W=-0.1708+2.3341 log L. Similarly for any given length (cm) the meat weight (gm) can be found by the relation, log w=-1.5745+3.0148 log L.
Resumo:
The findings are presented of a study conducted to determine a method for the calculation of the yield of dried air bladders of eel from the weight of the whole fish.
Resumo:
The study was conducted at the Central Experimental Station, Philippine Rice Research Institute, Maligaya, Science City of Munoz, Nueva Ecija, Philippines during the wet season to determine the suitable stocking density(s) for better growth and yield of fish under rice-fish production systems. Recovery rate of GIFT tilapia in different stocking densities ranged from 75.74 to 83.47%. Among different treatments, rice +5,000 fingerlings/ha and rice +10,000 fingerlings/ha resulted in the highest recovery rate of 83.33% and 83.47%, respectively. The lowest recovery rate of 75.75% was obtained from rice +20,000 fingerlings/ha, but similar to that was obtained (78.56%) from rice +15,000 fingerlings/ha. Significantly higher rate of gain in body weight and that of specific growth rate were recorded in the treatment from rice +5,000 fingerlings/ha, while other treatments resulted in similar absolute and specific growth rate. Fish yield increased significantly with relatively higher stocking densities, but higher densities produced maximum number of smaller fishes and also lower recovery rate.