60 resultados para Zoige wetland
Resumo:
This report describes the creation and assessment of benthic habitat maps for shallow-water (<30m) marine environments of the Guánica/Parguera and Finca Belvedere Natural Reserve in southwest Puerto Rico. The objective was to provide spatially-explicit information on the habitat types, biological cover and live coral cover of the region’s coral reef ecosystem. These fine-scale habitat maps, generated by interpretation of 2010 satellite imagery, provide an update to NOAA’s previous digital maps of the U.S. Caribbean (Kendall et al., 2001) for these areas. Updated shallow-water benthic habitat maps for the Guánica/Parguera region are timely in light of ongoing restoration efforts in the Guánica Bay watershed. The bay is served directly by one river, the Rio Loco, which flows intermittently and more frequently during the rainy season. The watershed has gone through a series of manipulations and alterations in past decades, mainly associated with agricultural practices, including irrigation systems, in the upper watershed. The Guánica Lagoon, previously situated to the north of the bay, was historically the largest freshwater lagoon in Puerto Rico and served as a natural filter and sediment sink prior to the discharge of the Rio Loco into the Bay. Following alterations by the Southwest Water Project in the 1950s, the Lagoon’s adjacent wetland system was ditched and drained; no longer filtering and trapping sediment from the Rio Loco. Land use in the Guánica Bay/Rio Loco watershed has also gone through several changes (CWP, 2008). Similar to much of Puerto Rico, the area was largely deforested for sugar cane cultivation in the 1800s, although reforestation of some areas occurred following the cessation of sugar cane production (Warne et al., 2005). The northern area of the watershed is generally mountainous and is characterized by a mix of forested and agricultural lands, particularly coffee plantations. Closer to the coast, the Lajas Valley Agricultural Reserve extends north of Guánica Bay to the southwest corner of the island. The land use practices and watershed changes outlined above have resulted in large amounts of sediment being distributed in the Rio Loco river valley (CWP, 2008). Storm events and seasonal flooding also transport large amounts of sediment to the coastal waters. The threats of upstream watershed practices to coral reefs and the nearshore marine environment have been gaining recognition. Guánica Bay, and the adjacent marine waters, has been identified as a “management priority area” by NOAA’s Coral Reef Conservation Program (CRCP, 2012). In a recent Guánica Bay watershed management plan, several critical issues were outlined in regards to land-based sources of pollution (LBSP; CWP, 2008). These include: upland erosion from coffee agriculture, filling of reservoirs with sediment, in-stream channel erosion, loss of historical Guánica lagoon, legacy contaminants and sewage treatment (CWP, 2008). The plan recommended several management actions that could be taken to reduce impacts of LBSP, which form the basis of Guánica watershed restoration efforts.
Resumo:
Small indigenous fish species (SIS) are an important source of essential macro- and micronutrients that can play an important role in the elimination of malnutrition and micronutrient deficiencies in the populations of many South and Southeast Asian countries. Of the 260 freshwater fish species in Bangladesh, more than 140 are classified as SIS and are an integral part of the rural Bangladeshi diet. As many SIS are eaten whole, with organs and bones, they contain high amounts of vitamins and minerals, including calcium, and iron and zinc. Some SIS, such as mola, are also rich in vitamin A. SIS are often cooked with vegetables and a little oil, so they contribute to the food diversity of the rural poor.SIS are recognized as a major animal-source food group, contributing to improved food and nutrition security and livelihoods of the people of South and Southeast Asia. The purpose of this workshop is to bring together policy makers, extension agents, researchers, non-governmental and development organizations to share knowledge about small fish, their contribution to better nutrition, production technologies, and strategies for wider dissemination of pond culture and wetland based-production and conservation technologies. The workshop is expected to generate ideas for further research and development of sustainable technologies for production, management and conservation of SIS for the benefit of the people of Bangladesh as well as the South and Southeast Asian region.
Resumo:
One of the avenues through which the Government objective of poverty eradication in Uganda can be achieved is Fisheries development and management. Up to 20% of Uganda’s surface area is covered by aquatic systems i.e. lakes, rivers, streams and swamps and to a large extent, all these are interconnected. The large lakes: Victoria, Albert, Kyoga, George and Edward are sites of the more important commercial fisheries, but even the smaller water bodies, rivers (e.g. the Rivers Nile and Kagera) and the surrounding swamps provide sources of livelihood to rural areas. Fish is an important source of high quality food, employment revenue and is currently the second most important export commodity next to coffee generating approximately US $ 80 million annually. Fish exports to regional markets are worth at least US $ 20 million annually. Fish flesh is rich in proteins, which are superior to those of beef and poultry. Fish flesh contains an anticholesterol which assists in reducing heart diseases. Some fishes are of medicinal value e.g. haplochromines (Nkejje) are used to treat measles. Most of the fish in Uganda is got from lakes Victoria, Kyoga, Albert and Albert Nile, Edward and George production systems as well as from the 160 minor lakes and rivers and the associated wetland systems. Capture fisheries based in these systems contribute up to 99% of the fish production in Uganda but aquaculture is also picking up. The fishing industry employs up to one million Ugandans
Resumo:
About 18% of Uganda’s surface area is covered with water from which 300,000 metric tonnes of fish are produced. Fish are currently the second most important export commodity generating approximately US$100 million. Fish provides 50% of protein diet for the 20 million people translating into per capita consumption of 12 kg. Close to the production system, this figure rises to 50 – 100 kg. It is estimated that fishery-related activities employ at least one million people countrywide (i.e. 5% of the population). Fish is an important source of high quality food, employment, and revenue and it is currently the second most important export commodity next to coffee generating approximately US $ 80 million annually. Fish exports to regional markets are worth at least US $ 20 million annually. Fish flesh is rich in proteins, which are superior to those of beef and poultry. Fish flesh contains an anticholesterol which assists in reducing heart diseases. Some fishes are of medicinal value e.g. haplochromines (Nkejje) are used to treat measles. Most of the fish in Uganda is got from lakes Victoria, Kyoga, Albert and Albert Nile, Edward and George production systems as well as from the 160 minor lakes and rivers and the associated wetland systems. Capture fisheries based in these systems contribute up to 99% of the fish production in Uganda but aquaculture is also picking up. The fishing industry employs up to one million Ugandans.
Resumo:
About 18% of Uganda’s surface area is covered with water from which about 300,000 metric tonnes of fish are produced. Fish are currently the second most important export commodity generating approximately US$100 million annually. Fish provides 50% of protein diet for the 20 million people translating into per capita consumption of 12 kg. Close to the production system, this figure rises to 50 – 100 kg. It is estimated that fishery-related activities employ at least one million people countrywide (i.e. 5% of the population). Fish exports to regional markets are worth at least US $ 20 million annually. Fish flesh contains an anticholesterol which assists in reducing heart diseases. Some fishes are of medicinal value e.g. haplochromines (Nkejje) are used to treat measles. Most of the fish in Uganda is got from lakes Victoria, Kyoga, Albert and Albert Nile, Edward and George production systems as well as from the 160 minor lakes and rivers and the associated wetland systems. Capture fisheries based in these systems contribute up to 99% of the fish production in Uganda but aquaculture is also picking up. The fishing industry employs up to one million Ugandans
Resumo:
Mangrove, a tidal wetland, is a good example of complex land and water system whose resource attributes is neither fully understood from an ecological perspective nor valued comprehensively in economic terms. With increased ecological and social perception of the functions of wetlands, the utility and relative values will increase. The perception, however, varies from society to society. It must be recognized that mangrove forests differ greatly in local conditions and in their ability to produce a wide variety of economic products. What may be highly productive strategy for one country may have little meaning to its neighbor. Therefore, it becomes essential that from among diversity of potential uses of the mangrove environment, specific uses will have to be decided, and management plan developed on site, or area specific basis. It is therefore necessary to arrive at a balance between the views of the ecologists and economists on the management of mangroves. Biological conservation should encompass resource management in the sense that integrity of the biological and physical attributes of the resource base should be sustained and man-induced management practices should not alter an ecosystem to the extent that biological production is eliminated. Sustained yield management for food, fiber and fuel would serve to sustain local fisheries while generating new economic enterprises. This requires the recognition of mangrove environment as a resource with economic value, and managed according to local conditions and national priorities.
Resumo:
In Bangladesh, wetlands are managed through leasing system traditionally from time immemorial. Recently the Government accepted co-management approach for wetland fisheries management and this approach is being practiced in few wetlands for maximize revenue income. A study was carried out to evaluate trend and impact of co-management in Tanguar haor (a Ramsar site wetland) on fisheries resources and livelihood of resident people in the immediate vicinity of the wetland. In Tanguar haor, conflict between leaseholders and the local community was a common phenomenon in the past. Since 2003 the district administration of Sunamganj has been managing the vast wetland resources, however, local people participation was ignored in haor management system. Average monthly fish catch of fishermen increased by 17% after introduction of co-management system and 7 fish species reappeared after introduction of co-management. Average monthly volume of fish catch has increased from 70 kg to 87 kg. A well-defined management structure has been developed for integration of all people of Tanguar haor which would enable them to raise voice jointly and influence policy in their favour.
Resumo:
A number of wide-ranging monitoring studies have been performed in order to estimate the degree of mercury (Hg) contamination in freshwater ecosystems. Knowledge regarding contamination of different levels of the food chain is necessary for estimation of total pollutant input fluxes and subsequent partitioning among different phases in the aquatic system. The growing international concern about this environmental data is closely related to the strongly developing ecological risk assessment activities. In addition,freshwater monitoring outputs hold a key position in the estimation of the Hg dose consumed by the human population as it is highly dependent on fish consumption. So monitoring of Hg in the tissue of edible fish is extremely important because of contaminated fish has caused serious neurological damage to new born babies and adults. Mercury tends to accumulate in fish tissue, particularly, in the form of methyl mercury, which is about 10 times more toxic than inorganic mercury. The Anzali lagoon is one of the biggest wetland of Guilan province, which joins to the Caspian sea. Many Chemical and industrial factories plus agricultural runoffs and urban and rural sewages are major polluting sources of the Anzali wetland. Since many of those polluting sources drain their wastes directly or indirectly into the Anzali wetland and their sewages may be polluted with Hg, this study was conducted to find out the bioaccumulation of Hg bioaccumulation in pike (Esox lucius) food chain from Anzali lagoon, Iran. Sampling were carried out from July 2004 to July 2005, in addition 318 speciments of 9 fish species were collected. T-Hg was measured by LECO AMA 254 Advanced Mercury Analyzer (USA) according to ASTM standard No D-6722. Each sample was analyzed 3 times. Accuracy of T-Hg analysis was checked by running three samples of Standard Reference Materials; SRM 1633b, SRM 2711 & Sra 2709. Detection limit was 0.001 mg/kg in dry weight. The Accuracy degree of analyzor equipment with RSD<%0.05 (N=7) was between %95.5 and %105. In overal eigth fish species were distingushed in the gut content of 87 speciments of pike with age 1-5 year and maximum length 550mm. The max. and min. concentration of T-Hg in dorsal muscle of pjke was 0.2ppm in one year and 1.2ppm in five year class. The mean of T-Hg significantly increased with age and length increased (P<0.05).Mercury accumulation pattern in pike was as well as muscle > liver > spleen (P<0.05). THg content in female was higher than male(P<0.05). In contrast the mean of THg concentration in dorsal muscle of eigth fish species as prey was 0.282, 0.261, 0.328, 0.254, 0.256, 0.286, 0.322 and 0.241 ppm for Carassius auratus gibelio, Hemiculter leucisculus, Blicca bjoerkna transcaucasica, Chalcalburnus mossulensis, Rhodeus sericeus amarus, Gambusia holbrooki, Alburnus charusini hohenackeri & Scardinius Erythrophthalmus respectively.Liner regresion indicated that high degree of relationship between age of pike and Uptak/Intake ratio (R2=%99.12) and indicated that the mercury bioaccumulation in the pike dorsal muscle increased with age increased. BFA was >1 and and indicating the mercury biomagnification in the pike food chain. Trophy level of pike in the Anzali lagoon was estimated as well as 3.5 and 4 . It is generally agreed that Hg concentration in carnivorous fish are higher than in noncarnivorous species.
Resumo:
The genetic structure of pikeperch (Sander lucioperca) and perch (Perca fluviatilis) populations was studied using microsatellite technique. A total of 207 specimens of adult pikeperch were collected from Aras dam (57 specimens), Anzali wetland (50 specimens), Talesh (50 specimens) and Chaboksar (50 specimens) coasts. Also a total of 158 specimens of adult perch were collected from Anzali (Abkenar (50 specimens)and Hendekhale(48 specimens)) and Amirkolaye(60 specimens) wetlands. About 2 g of each specimen's dorsal fin was removed, stored in 96% ethyl alcohol and transferred to the genetic laboratory of the International Sturgeon Research Institute. Genomic DNA was extracted using ammonium-acetate method. The quality and quantity of DNA was assessed using 1% agarose gel electrophoresis. Polymerase Chain Reaction (PCR) was conducted on the target DNA using 15 pairs of microsatellite primers. PCR products were electrophoresed on poly acryl amide gels (6%) that were stained that were stained using silver nitrate. DNA bands were analyzed with BioCapt software. Allele count and frequency, genetic diversity, expected and observed heterozygosity , allele number and the effective allele number, genetic similarity and genetic distance, Fst, Rst, Hardy Weinberg Equilibrium based on X2 and Analysis of Molecular Variance (AMOVA) at 10% confidence level was calculated using the Gene Alex software. Dendogram for genetic distances and identities were calculated using TFPGA program for any level of hierarchy. The results for P. fluviatilis showed that from 15 pair of primers that were examined 6 polymorphic and 7 monomorphic loci were produced, while 2 loci didn't produce any DNA bands. Mean allele number was 4.1±1.1 and mean observed and expected heterozygosity was 0.56±0.12 and 0.58±0.14 respectively. It was also seen that specimens from all regions were not in Hardy Weinberg Equilibrium in some of loci (P<0.001). Highest Fst (0.095) with Nm=2.37 was observed between Hendekhale and Amirkolaye and the lowest Fst (0.004) with Nm=59.31 was observed between Abkenar and Hendekhale. According to AMOVA Significant difference (P<0.05) was observed between recorded Rst in the studied regions in Anzali and Amirkolaye lagoons. In another words there are two distinct populations of this species in Anzali and Amirkolaye lagoons. The highest genetic distance (0.181) and lowest genetic resemblance (0.834) were observed between specimens from Hendekhale and Amirkolaye and the lowest genetic distance (0.099) and highest genetic 176 resemblance (0.981) were observed between specimens from Abkenar and Hendekhale. Based on the genetic dendogram tree derived by applying UPGMA algorithm, specimens from Anzali and Amirkolaye wetlands have the same ancestor. On the other hand there is no noticeable genetic distance between the specimens of these two regions. Also the results for S. lucioperca showed that from 15 pair of primers that were examined 6 polymorphic and 7 monomorphic loci were produced, while 2 loci didn't produce any DNA bands. Mean allele number was 3.0±0.6 and mean observed and expected heterozygosity was 0.52±0.21 and 0.50±0.14 respectively. It was also seen that specimens from all regions were not in Hardy Weinberg Equilibrium in some of loci (P<0.001). Highest Fst (0.093) with Nm=2.43 was observed between Aras dam and Anzali wetland and the lowest Fst (0.022) with Nm=11.27 was observed between Talesh and Chaboksar coasts. Significant differences (P<0.05) were observed between recorded Rst in the studied regions exept for Talesh and Chaboksar Coasts. In another words there are three distinct populations of this species in Caspian sea, Anzali wetland and Aras dam. Highest genetic distance (0.110) and lowest genetic resemblance (0.896) were observed between specimens from Aras dam and Anzali wetland and the lowest genetic distance (0.034) and highest genetic resemblance (0.966) were observed between specimens from Talesh and Chaboksar coasts. Based on the genetic dendogram tree derived by applying UPGMA algorithm, specimens from Talesh and Chaboksar coasts have the lowest genetic distance. On the other hand the main population of this species belongs to Anzali wetland. Phylogenetic relationship of these two species was inferred using mitochondrial cytochrome b gene sequencing. For this purpose 2 specimens of P. fluviatilis from Anzali wetland, 2 specimens of S. lucioperca from Aras dam and 2 specimens of S. lucioperca from Anzali wetland were sequenced and submitted in Gene Bank. These sequences were aligned with Clustal W. The phylogenic relationships were assessed with Mega 4. The results of evolutionary history studies of these species using Neighbor-Joining and Maximum Parsimony methods showed that the evolutionary origin of pikeperch in Aras Dam and Anzali wetland is common. On the other hand these two species had common ancestor in about 4 million years ago. Also different sequences of any region specimens are supposed as different haplotypes. 177 As a conclusion the results of this study showed that microsatellite and mtDNA sequencing methods respectively are effective in genetic structure and phylogenic studies of P. fluviatilis and S. lucioperca.
Resumo:
The paper presents some recommendations for the development of the environmentally acceptable coastal aquaculture such as: 1) Formulate coastal aquaculture development and management plans, 2) Formulate integrated coastal zone management plans, 3) Apply the environmental impact assessment (EIA) process to all major aquaculture proposals, 4) Select suitable sites for coastal aquaculture, 5) Improve the management of aquaculture operations, 6) Assess the capacity of the ecosystem to sustain aquaculture development with minimal ecological change, 7) Establish guidelines governing the use of mangrove wetland for coastal aquaculture, 8) Establish guidelines for the use of bioactive compounds in aquaculture, 9) Assess and evaluate the true consequences of transfers and introductions of exotic organisms, 10) Regulate discharges from land-based aquaculture through the enforcement of effluent standards, 11) Establish control measures for aquaculture products, 12) Increase public awareness of the safety aspects of consuming seafood, 13) Apply incentives and deterrents to reduce environmental degradation from aquaculture activities, and 14) Monitor for ecological change.
Resumo:
Lake Victoria, besides being the second largest in the world after Lake Superior, is the largest tropical lake. Its waters are shared by Kenya (6% of the surface area), Uganda (43%), and Tanzania (51%). Before dramatic structural and functional changes manifested in the lake's ecosystem especially in the 1980s, fish life flourished in the lake's entire water column at all times of the year. Currently, the situation is much more different from what it was in the past. The exponential increase in the introduced Nile perch (Lates niloticus) and Nile tilapia (Oreochromis niloticus) stocks, siltation, wetland degradation and eutrophication have characterised the lake ecosystem. The two exotic species and the small native cyprinid (Rastrineobola argentea) form the basis of the commercial fishery that was once dominated by two native tilapiines (Oreochromis esculentus and Oreochromis variabilis) and five other large-bodied endemic fishes. Severe deoxygenation observed at shallow depths (Ochumba 1990; Hecky et al., 1994) indicates that a large volume of the lake is unable to sustain fish life. The Lake Victoria catchment is one of the most densely populated areas in East Africa, encompassing a population of about 30 million people. Widespread poverty resulting from high inflation rates, lack of opportunities and general unemployment have characterised the lakeside communities over much of the last two decades. The biophysical environment in which Lake Victoria exists makes the lake particularly susceptible to changes that occur as a result of human modification to the watershed or the lake itself, thus rendering benefits from the lake unsustainable.
Resumo:
The shore margins of Lakes in the Victoria basin are highly dented and mostly swampy, fringed by Papyrus and other wetland vegetation types important habitats for herpetofauna and wetland adapted mammals. Of recent, the extent of the 'wetland' has been extended in several places by the Water Hyacinth (Eichornia cryaseps). Ecologically, amphibians are important in many ways; they are mostly predators, acting as primary and secondary carnivores. Their prey consists mostly of insects, some of which are pests to crops or disease vectors. They are also inter-inked in food chains, often acting as food for other vertebrates, such as pigs, birds, snakes and sometimes man. Because of their ectothermic physiology, the life history and ecology of amphibians often differ markedly from that of birds or mammals (McCollough el ai, (992).Amphibians are known to be an easily recognisable taxon in given habitats; and populations are sometimes specialised within a narrow habitat. This makes it easy and practical to monitor changes in composition over time, given different onditions (Heyer el al 1994, Phillips 1990). Impacts on their habitat are reflected in changes in numbers and species diversity in a short time. These are some of the factors that have made amphibians to be recognised, nowadays, as good indicators of habitat change
Resumo:
There is increasing awareness that integrating gender into development frameworks is critical for effective implementation of development strategies. In working to alleviate rural poverty, the CGIAR Research Program on Aquatic Agricultural Systems (AAS) recognizes that “business as usual” gender integration approaches will not deliver lasting and widespread improvements in agricultural productivity, poverty reduction and food security. In response, AAS operationalized a gender transformative approach. The approach is informed by conceptual frameworks that explicitly recognize the potent influence of social relations on creating and perpetuating gender inequalities. In this way, AAS aims to address the underlying causes of rural poverty and gender inequality in Zambia’s Barotse Floodplain, where people rely extensively on riverine and wetland ecosystems for food and livelihood security. A central question guiding the research program is “How do social norms and gendered power relations influence agricultural development outcomes?” The findings presented in this report provide insights that help answer this question. The report presents a review of literature relevant to livelihoods, ecosystem services, and gender and social relations in Zambia, with a specific focus on Western Province, where AAS is currently implemented. It also presents a synthesis of findings of a social and gender analysis conducted in 2013 in 10 focal communities situated in and around the Barotse Floodplain.
Resumo:
The wetlands in Uganda are undergoing rapid degradation. Swamps provide a habitat for birds, fishes and other animals. They have many ecological functions and, furthermore, supply people with multiple resources, such as reeds, herbs, fish and agricultural products. Although some'uses of wetland are sustainable, others lead to rapid deterioration. The main threat to swamps are human activities. One reason for the progressive destruction of wetlands is that the people may not appreciate the existence of and the treasures represented by wetlands even if they live in arm long distance from them. Another reason is that the two most important user groups of wetlands, farmers and fishermen, although having conflicting interests concerning the wetlands, hardly interact. A study, done as part of the Ecotone Project at the Fisheries Research Institute (FIRI), tries to evaluate in monetary terms how much Uganda loses with progressive destruction of wetlands. The study looks first at which uses of the wetlands are of importance and thereafter it examines, what data is needed and available to calculate the values of those uses.
Resumo:
Reports of hydrilla (Hydrilla verticilata) infestation lakes Bisina and Opeta were verbally communicated by some members of FIRRI who undertook surveys during the LVEMP 1 phase (1997 to 2004) to assess the diversity and stocks of fishes in the Kyoga basin satellite lakes. This issue was taken up by FIRRI and NAARI staff who work on aquatic weeds management to ascertain and quantify the presence of H. verticilata and other aquatic weeds, with the sole aim of finding ways and means of controlling one of the world's worst aquatic weeds, H. verticilata.The survey on Lake Opeta indicated that this weed was rare since only a few small broken pieces were sited at the lake's outflow through an extensive wetland to Lake Bisina. It was therefore concluded that it was not economically viable to allocate resources for further survey of H. verticilata on Lake Opeta. This finding therefore discredited the previous (informal) reports that H. verticilata was well established on Lake Opeta. It should be noted that the reports came from scientists who were not well versed with systematics of aquatic plants.