52 resultados para Working-age Population
Resumo:
Population dynamics of the juvenile hilsa shad (Tenualosa ilisha) in the nursery ground of the Meghna River have been studied on the basis of the length cohort analysis of 8023 specimens. The growth parameters viz; asymptotic length (Lα), curvature character (K) and initial time (t0) were found to be 30.69 cm, 1.2 yrˉ¹ and 0.45 yrˉ¹ respectively. Curvature parameter indicates that jatka is a fast growth performer. The natural, fishing and total mortality were found to be 1.37 yrˉ¹, 1.41 yrˉ¹ and 2.78 yrˉ¹ respectively. Survival rate (S) was found to be 6.2%. A small difference was found between the age at first capture (Tc) and the recruitment age (Tr). Stocks of jatka seem to be overexploited and need to be conserved.
Resumo:
Age structure and growth profile based on the scale studies of 468 specimens ranging from 17-62 cm total length of Labeo calbasu (Hamilton) from Harike wetland (30°13'N, 75°12'E), Punjab, India have been described, the present study showed better growth in terms of two important growth parameters namely index of species average size and population weight-growth intensity. Two distinct phases in its life history have been described that indicates the optimum exploitation of this species from this water body. Harvestable size is found to be fish of 34 cm total length. The detailed structural elaboration of scale (normal, regenerated, lateral line) has also been done using scanning electron microscopy (SEM).
Resumo:
Cuttlefishes were exploited exclusively by trawls along the coast. Growth, recruitment, mortality and exploitation rates of Sepia aculeata and Sepia pharaonis were studied. Fishery of the former was supported mainly by zero year and the latter by zero and one + age groups. Both attain sexual maturity during the first year itself and spawn during August-March with peak during November-December. Natural mortality of S.aculeata was 2.22, fishing mortality 2.34 and total mortality 4.56. It was 1.69, 1.97 and 3.66 respectively for S.pharaonis. Exploitation rate was 0.52 and Emax 0.72 for S.aculeata and it was 0.54 and 0.76 respectively for S.pharaonis. Their mortality and exploitation rates indicated that stock remains under-exploited and have considerable scope for improving the production. However, both stock and catch exhibited wide annual fluctuation with declining trend during the period. These necessitated immediate attention including measures to minimise juvenile exploitation for improving stock and fishery.
Resumo:
Samples were collected to study the age and growth of Labeo calbasu (Hamilton) from the river Ghaghra (Guptarghat centre, Faizabad). The scales of L. calbasu have been used for age and growth studies in present paper. Study of the marginal rings on the scales of L. calbasu indicates their annual nature. The fish attained growth in 1st 18.7 cm, 2nd 27.8 cm, 3rd 35.7 cm, 4th 41.8 cm, 5th 46.9 cm, 6th 54.9 cm and 7th 57.4 cm years of the life. The growth rate was observed 18.7, 9.1, 7.9, 6.7, 5.1, 8.0 and 2.5 cm for 1st to 7th age classes respectively. The age groups 1+ to 4+ constituted 91.17% of the total exploited population and 8.83% of remaining age groups (5+ to 7+). The maximum exploited population was observed in 2+ age group with 33.68%. Overall exploitation pattern was systematic and a good indicator for heavy recruitment.
Resumo:
This study was conducted to determine reproduction characteristics, diet regime, age structure and population dynamics parameters of the vimba vimba persa (Pallas, 1811) in Mazandaran waters of the Caspian Sea, from October 2008 to September 2009. A total of 994 specimens were monthly collected by beach seine and cast net from six fish landings of Ramsar, Tonekabon, Chaloos, Mahmood Abad, Sari and Behshahr. Biometric characters were measured for each specimen at the laboratory. Scales were used for age determination. Sex determination and fecundity were determined. Population dynamic parameters as well as stock assessment including cohort analysis were estimated using FISAT software. The finding showed that the mean of fork length and body weight of the Caspian Vimba were 168.4±2.6 mm and 71.94±32.24 g respectively. Strong correlation was found between these two variables (a= 0.012; b = 3.047; r2 = 0.955). 92 specimens were studied from the fecundity point of view. This species was found to have more abundance in spring (esp. Apr-May). The samples composed of 397(42.6%) male, 537(57.4%) female; Overall sex ratio (M: F =1: 1.35) was significantly different from the expected 1:1 ratio (p ≤0.05). The advanced stages of maturity (4th & 5th) were found in April and May. The highest Gonadosomatic Index in female was in May and the lowest one was in July. This fish is therefore a spring spawner. The maximum absolute and relative fecundities were 34640 and 260.9, respectively; the minimum absolute and relative fecundities were 5400 and 94.5 respectively. The averages of absolute and relative fecundities were 17198±7710 and 171.85±48.8, respectively. Coefficient vacuity index was 59.2% which indicates that this fish is mesophagous. Among of living creature consumes by Caspian Vimba mollusks, 76 arthropods, worms, plants, detritus and fishes were found 32.9% , 26.7% , 13.4% , 17% , 4.4% and 1.6% respectively. The infinite fork lengths were 261 mm for females, 25mm for males and 261 mm for both sexes respectively. For population growth and mortality parameters; K ( 0.28 per year for both sexes, 0.3 per year for males, 0.33 per year for females); t0 ( -0.65 year for both sexes, -0.23 year in females, -0.51 year in males ); Φ' ( 2.28 ); Z ( 0.98 per year ); M ( 0.59 per year); F ( 0.39 per year) and Exploitation coefficient was 0.4. The analysis showed that total biomass and MSY were 1336 and 528.8 tonnes respectively.
Resumo:
In order to come up with the responsible fishing pattern of common carp, there was a need to identify some of the biological characteristics and stock assessment of carp in Iranian waters of the Caspian Sea .The fork length ,weight ,age ,growth parameters of von bertalanffy and mortality rates of common carp were estimated from oct 2006 to sept 2007.Based on the exponential relationship between length and weight in the size range 6.3-65.6 cm ,b was calculated 2.895, 2.843 and 2.925 respectively for combined sexes ,males and females. The mean condition factor was 1.9 which is close to the ideal condition.The results from measuring 3170 specimens ,were showed the first fork length of maturity was 30 cm for males and 32 cm for females. The results indicated that females were predominate and sex ratio was 0.66:1 (M:F) and chi-squares analysis showeda significant difference between males and females.(p<0.05).Length infinity and growth coefficient were calculated by three different methods as below: Length frequency analysis : k=0.17 L∞ =68.04 Age-Length Key k=0.15 L∞ =74.25 Back calculation : k=0.14 L∞ =68.4 The mortality parameters and exploitation rate were estimated as below : Z=0.73 per year M=0.31 per year F=0.42 per year E=0.56 Refer to amount of common carp catch in 2007 -08 ,biomass was calculated 9640.2 tones by jone's cohort analysis and MSY 2374.5 tones.According to analysis ,the number of common carp in the distribution area (Iranian part of the Caspian Sea ) was estimated 24 millions in the 2006-07.
Resumo:
Populations of kilka in the Caspian Sea have important role in the food chain. This study was conducted to determine population parameters of three species of kilka in the south of the Caspian Sea, during 2006-2007. Mean length was 102.4±9.7 mm for common kilka, 117.8±6.9 mm for anchovy and 119.5±10.9 mm for bigeye. The relationship between length and weight indicated the negative allometric growth in the all three species. Mean age for common kilka, anchovy and bigeye were 3.6, 4.6 and 4.6 years, respectively. Sex ratio (M:F) were 0.52:1 for anchovy, 0.60:1 for common kilka and 1.60:1 for bigeye. The value of growth coefficient (K) was the highest (0.321) for the common kilka, (0.267) for the bigeye, and the lowest for the anchovy kilka (0.245). Total mortality estimated from the descending of the catch curve using the age structure, Z=1.280 yr-1 for common kilka, Z=1.067 yr-1 for anchovy, and Z=1.015 yr-1 for bigeye. Natural mortality (M) were estimated using Pauly formula as M=0.622, M=0.537 and M=0.503 per year for common kilka, bigeye and anchovy, respectively. Value of fishing mortality (F) were estimated from Z and M, as F=0.658 for common kilka, F=0.564 for anchovy and F=0.478 for bigeye. The exploitation rate (E) were estimated E=0.514 for common kilka, E=0.528 for anchovy and E= 0.471 for bigeye. The estimate of MCY (Maximum Constant Yield) was calculated using the more reliable time series of commercial catch data from 2001-2007, which resulted in an estimate of MCY for the kilka fishery of 14100 tonnes.