47 resultados para Winter storms


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The water circulation of the Egyptian Mediterranean waters was computed during winter and summer seasons using the dynamic method. The reference level was set at the 1000db surface. The results showed that the surface circulation is dominated by the Atlantic water inflow along the North African coast and by two major gyres, the Mersa Matruth anticyclonic gyre and El-Arish cyclonic gyre. The results showed a seasonal reversal of El-Arish gyre, being cyclonic in winter and anticyclonic in summer. El-Arish gyre had not been previously measured. The geostrophic current velocity at the edges of the Mersa Matruth gyre varied between 12.5 and 29.1cm/sec in winter and between 6.5 and 13.1cm/sec in summer. The current velocity reached its maximum values (>40cm/sec) at El-Arish gyre. The current velocity at the two gyres decreased with increasing depth. The North African Current affects the surface waters down to a depth of 100m, and that its mean velocity varies between 6 and 38cm/sec.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study heat budget components and momentum flux for August and January 1992 over the north Arabian Sea are computed. The marine meteorological data measured on board during the cruises of PAK-US joint project (NASEER) are used for the computation. Significant differences were found in the heat budget components as well as in the momentum flux during different monsoon periods over the north Arabian Sea. The latent heat flux was always positive and attributed to the large vapour pressure gradient. The computed moisture and latent heat fluxes in January were higher than August The highest value of latent heat flux 309 W/m2 at station 8 was evaluated. These higher latent heat fluxes were due to the large vapour pressure gradient, air-sea temperature difference, the wind speed, and the prevailing wind direction (from north and northeast). Negative values of sensible heat fluxes in both seasons indicate that the heat transfer was from the atmosphere to the ocean. The negative values of net heat gain indicate that the sea surface field became an energy sink: or the sea surface supplied more energy to the atmosphere than it received from it. Large variation in the momentum flux mainly attributed to the variation in the wind speed. Aerial averages of heat and momentum fluxes were also computed.