80 resultados para Ventilator associated pneumonia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Principal coordinates analysis and multiple regression analysis were used to determine the environmental factors associated with the decline in phytoplankton production during and after the 1977 drought for the San Francisco Bay-Delta Estuary. Physical, chemical and biological data were collected semimonthly or monthly during the spring-summer between 1973 and 1982 from 15 sampling sites located throughout the Bay-Delta. A decline in phytoplankton community diversity and density during the 1977 drought and subsequent years (1978 through 1981) was described using principal coordinates analysis. The best multiple regression which described the changes in phytoplankton community succession contained the variables water temperature, wind velocity and ortho-phosphate concentration. Together these variables accounted for 61 percent of the variation in the phytoplankton community among years described by principal coordinates analysis. An increase in water temperature, wind velocity and ortho-phosphate concentration within the Bay-Delta, beginning in June 1976 and continuing through 1981, was demonstrated using weighted moving averages. From the strong association between phytoplankton community succession and climatic variables it was hypothesized that the decline in phytoplankton production during and after the 1977 drought was associated with climatic changes within the northeast Pacific.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transition between freshwater and marine environments is associated with high mortality for juvenile anadromous salmonids, yet little is known about this critical period in many large rivers. To address this deficiency, we investigated the estuarine ecology of juvenile salmonids and their associated fish assemblage in open-water habitats of the lower Columbia River estuary during spring of 2007–10. For coho (Oncorhynchus kisutch), sockeye (O. nerka), chum (O. keta), and yearling (age 1.0) Chinook (O. tshawytscha) salmon, and steelhead (O. mykiss), we observed a consistent seasonal pattern characterized by extremely low abundances in mid-April, maximum abundances in May, and near absence by late June. Subyearling (age 0.0) Chinook salmon were most abundant in late June. Although we observed interannual variation in the presence, abundance, and size of juvenile salmonids, no single year was exceptional across all species-and-age classes. We estimated that >90% of juvenile Chinook and coho salmon and steelhead were of hatchery origin, a rate higher than previously reported. In contrast to juvenile salmonids, the abundance and composition of the greater estuarine fish assemblage, of which juvenile salmon were minor members, were extremely variable and likely responding to dynamic physical conditions in the estuary. Comparisons with studies conducted 3 decades earlier suggest striking changes in the estuarine fish assemblage—changes that have unknown but potentially important consequences for juvenile salmon in the Columbia River estuary.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A survey of the larval and juvenile fishes associated with the pelagic Sargassum habitat in the South Atlantic Bight and adjacent western Atlantic Ocean was conducted from July 1991 through March 1993. Fishes representing 104 taxonomic categories were identified, including reef fishes, coastal demersal, coastal pelagic, epipelagic and mesopelagic species. The most important families were Balistidae and Carangidae, each represented by 15 species. Species composition, species diversity and abundance varied both seasonally and regionally. Diversity was highest during spring through fall over the outer continental shelf and in the Gulf Stream. Abundance decreased from spring through winter and from the continental shelf into offshore waters. The numbers of fishes and fish biomass were found to be positively correlated with the wet weight of algae in most cases examined. The results of this study will be useful to fisheries managers assessing the potential impacts of commercial Sargassum harvesting in the region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This Freely Associated States Shallow-water Coral Ecosystem Mapping Implementation Plan (FAS MIP) presents a framework for the development of shallow-water (~0–40 m; 0–22 fm) benthic habitat and possibly bathymetric maps of critical areas of the Freely Associated States (FAS). The FAS is made up of three self-governing groups of islands and atolls—the Republic of Palau (Palau), the Federated States of Micronesia (FSM), and the Republic of the Marshall Islands (RMI)—that are affiliated with the United States through Compacts of Free Association. This MIP was developed with extensive input from colleges, national and state regulatory and management agencies, federal agencies, non-governmental organizations, and individuals involved in or supporting the conservation and management of the FAS’s coral ecosystems. A list of organizations and individuals that provided input to the development of this MIP is provided in Appendix 1. This MIP has been developed to complement the Coral Reef Mapping Implementation Plan (2nd Draft) released in 1999 by the U.S. Coral Reef Task Force’s Mapping and Information Synthesis Working Group. That plan focused on mapping United States and FAS shallow-water (then defined as <30 m) coral reefs by 2009, based on available funding and geographic priorities, using primarily visual interpretation of aerial photography and satellite imagery. This MIP focuses on mapping the shallow-water (now defined as 0–40 m, rather than 0–30 m) coral ecosystems of the FAS using a suite of technologies and map development procedures. Both this FAS MIP and the 1999 Coral Reef Mapping Implementation Plan (2nd Draft) support to goals of the National Action Plan to Conserve Coral Reefs (U.S. Coral Reef Task Force, 2000). This FAS MIP presents a framework for mapping the coral ecosystems of the FAS and should be considered an evolving document. As priorities change, funding opportunities arise, new data are collected, and new technologies become available, the information presented herein will change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the Florida Panhandle region, bottlenose dolphins (Tursiops truncatus) have been highly susceptible to large-scale unusual mortality events (UMEs) that may have been the result of exposure to blooms of the dinoflagellate Karenia brevis and its neurotoxin, brevetoxin (PbTx). Between 1999 and 2006, three bottlenose dolphin UMEs occurred in the Florida Panhandle region. The primary objective of this study was to determine if these mortality events were due to brevetoxicosis. Analysis of over 850 samples from 105 bottlenose dolphins and associated prey items were analyzed for algal toxins and have provided details on tissue distribution, pathways of trophic transfer, and spatial-temporal trends for each mortality event. In 1999/2000, 152 dolphins died following extensive K. brevis blooms and brevetoxin was detected in 52% of animals tested at concentrations up to 500 ng/g. In 2004, 105 bottlenose dolphins died in the absence of an identifiable K. brevis bloom; however, 100% of the tested animals were positive for brevetoxin at concentrations up to 29,126 ng/mL. Dolphin stomach contents frequently consisted of brevetoxin-contaminated menhaden. In addition, another potentially toxigenic algal species, Pseudo-nitzschia, was present and low levels of the neurotoxin domoic acid (DA) were detected in nearly all tested animals (89%). In 2005/2006, 90 bottlenose dolphins died that were initially coincident with high densities of K. brevis. Most (93%) of the tested animals were positive for brevetoxin at concentrations up to 2,724 ng/mL. No DA was detected in these animals despite the presence of an intense DA-producing Pseudo-nitzschia bloom. In contrast to the absence or very low levels of brevetoxins measured in live dolphins, and those stranding in the absence of a K. brevis bloom, these data, taken together with the absence of any other obvious pathology, provide strong evidence that brevetoxin was the causative agent involved in these bottlenose dolphin mortality events.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NOAA has a mandate to explore and understand deep-sea coral ecology under Magnuson-Stevens Sustainable Fisheries Conservation Act Reauthorization of 2009. Deep-sea corals are increasingly considered a proxy for marine biodiversity in the deep-sea because corals create complex structure, and this structure forms important habitat for associated species of shrimp, crabs, sea stars, brittle stars, and fishes. Yet, our understanding of the nature of the relationships between deep-corals and their associated species is incomplete. One of the primary challenges of conducting any type of deep-sea coral (DSC) research is access to the deep-sea. The deep-sea is a remote environment that often requires long surface transits and sophisticated research vehicles like submersibles and remotely operated vehicles (ROVs). The research vehicles often require substantial crew, and the vehicles are typically launched from large research vessels costing many thousands of dollars a day. To overcome the problem of access to the deep-sea, the Deep Coral and Associated Species Taxonomy and Ecology (DeepCAST) Expeditions are pioneering the use of shore-based submersibles equipped to do scientific research. Shore-based subs alleviate the need for expensive ships because they launch and return under their own power. One disadvantage to the approach is that shore-based subs are restricted to nearby sites. The disadvantage is outweighed, however, by the benefit of repeated observations, and the opportunity to reduce the costs of exploration while expanding knowledge of deep-sea coral ecology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Management agencies often use geopolitical boundaries as proxies for biological boundaries. In Hawaiian waters a single stock is recognized of common bottlenose dolphins, Tursiops truncatus, a species that is found both in open water and near-shore among the main Hawaiian Islands. To assess population structure, we photo-identified 336 distinctive individuals from the main Hawaiian Islands, from 2000 to 2006. Their generally shallow-water distribution, and numerous within-year and between-year resightings within island areas suggest that individuals are resident to the islands, rather than part of an offshore population moving through the area. Comparisons of identifications obtained from Kaua‘i/Ni‘ihau, O‘ahu, the “4-island area,” and the island of Hawai‘i showed no evidence of movements among these island groups, although movements from Kaua‘i to Ni‘ihau and among the “4-islands” were documented. A Bayesian analysis examining the probability of missing movements among island groups, given our sample sizes for different areas, indicates that interisland movement rates are less than 1% per year with 95% probability. Our results suggest the existence of multiple demographically independent populations of island-associated common bottlenose dolphins around the main Hawaiian islands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Flower Garden Banks National Marine Sanctuary (FGBNMS) is located in the northwestern Gulf of Mexico approximately 180 km south of Galveston, Texas. The sanctuary’s distance from shore combined with its depth (the coral caps reach to within approximately 17 m of the surface) result in limited exposure of this coral reef ecosystem to natural and human-induced impacts compared to other coral reefs of the western Atlantic. In spite of this, the sanctuary still confronts serious impacts including hurricanes events, recent outbreaks of coral disease, an increase in the frequency of coral bleaching and the massive Diadema antillarum die-off during the mid-1980s. Anthropogenic impacts include large vessel anchoring, commercial and recreational fishing, recreational scuba diving, and oil and gas related activities. The FGBNMS was designated in 1992 to help protect against some of these impacts. Basic monitoring and research efforts have been conducted on the banks since the 1970s. Early on, these efforts focused primarily on describing the benthic communities (corals, sponges) and providing qualitative characterizations of the fish community. Subsequently, more quantitative work has been conducted; however, it has been limited in spatial scope. To complement these efforts, the current study addresses the following two goals put forth by sanctuary management: 1) to develop a sampling design for monitoring benthic fish communities across the coral caps; and 2) to obtain a spatial and quantitative characterization of those communities and their associated habitats.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the past decade, increased awareness regarding the declining condition of U.S. coral reefs has prompted various actions by governmental and non-governmental organizations. Presidential Executive Order 13089 created the U.S. Coral Reef Task Force (USCRTF) in 1998 to coordinate federal and state/territorial activities (Clinton, 1998), and the Coral Reef Conservation Act of 2000 provided Congressional funding for activities to conserve these important ecosystems, including mapping, monitoring and assessment projects carried out through the support of NOAA’s CRCP. Numerous collaborations forged among federal agencies and state, local, non-governmental, academic and private partners now support a variety of monitoring activities. This report shares the results of many of these monitoring activities, relying heavily on quantitative, spatially-explicit data that has been collected in the recent past and comparisons with historical data where possible. The success of this effort can be attributed to the dedication of over 270 report contributors who comprised the expert writing teams in the jurisdictions and contributed to the National Level Activities and National Summary chapters. The scope and content of this report are the result of their dedication to this considerable collaborative effort. Ultimately, the goal of this report is to answer the difficult but vital question: what is the condition of U.S. coral reef ecosystems? The report attempts to base a response on the best available science emerging from coral reef ecosystem monitoring programs in 15 jurisdictions across the country. However, few monitoring programs have been in place for longer than a decade, and many have been initiated only within the past two to five years. A few jurisdictions are just beginning to implement monitoring programs and face challenges stemming from a lack of basic habitat maps and other ecosystem data in addition to adequate training, capacity building, and technical support. There is also a general paucity of historical data describing the condition of ecosystem resources before major human impacts occurred, which limits any attempt to present the current conditions within an historical context and contributes to the phenomenon of shifting baselines (Jackson, 1997; Jackson et al., 2001; Pandolfi et al., 2005).