113 resultados para United States. Army. Signal Corps


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data collected by fisheries observers aboard U.S. pelagic longline vessels were examined to quantify and describe elasmobranch bycatch off the southeastern U.S. coast (lat. 22°–35°N, long. 71°–82°W). From 1992 to 2000, 961 individual longline hauls were observed, during which 4,612 elasmobranchs (15% of the total catch) were documented. Of the 22 elasmobranch species observed, silky sharks, Carcharhinus falciformis, were numerically dominant (31.4% of the elasmobranch catch). The catch status of the animals (alive or dead) when the gear was retrieved varied widely depending on the species, with high mortalities seen for the commonly caught silky and night, C. signatus, sharks and low mortalities for rays (Dasyatidae and Mobulidae), blue, Prionace glauca; and tiger, Galeocerdo cuvier; sharks. Discard percentages also varied, ranging from low discards (27.6%) for shortfin mako, Isurus oxyrinchus, to high discards for blue (99.8%), tiger (98.5%), and rays (100%). Mean fork lengths indicated the majority of the observed by-catch — regardless of species — was immature, and significant quarterly variation in fork length was found for several species including silky; dusky, C. obscurus; night; scalloped hammerhead, Sphyrna lewini; oceanic whitetip, C. longimanus; and sandbar, C. plumbeus; sharks. While sex ratios overall were relatively even, blue, tiger, and scalloped hammerhead shark catches were heavily dominated by females. Bootstrap methods were used to generate yearly mean catch rates (catch per unit effort) and 95% confidence limits; catch rates were generally variable for most species, although regression analysis indicated significant trends for night, oceanic whitetip, and sandbar sharks. Analysis of variance indicated significant catch rate differences among quarters for silky, dusky, night, blue, oceanic whitetip, sandbar, and shortfin mako sharks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study, part of a broader investigation of the history of exploitation of right whales, Balaena glacialis, in the western North Atlantic, emphasizes U.S. shore whaling from Maine to Delaware (from lat. 45°N to 38°30'N) in the period 1620–1924. Our broader study of the entire catch history is intended to provide an empirical basis for assessing past distribution and abundance of this whale population. Shore whaling may have begun at Cape Cod, Mass., in the 1620’s or 1630’s; it was certainly underway there by 1668. Right whale catches in New England waters peaked before 1725, and shore whaling at Cape Cod, Martha’s Vineyard, and Nantucket continued to decline through the rest of the 18th century. Right whales continued to be taken opportunistically in Massachusetts, however, until the early 20th century. They were hunted in Narragansett Bay, R.I., as early as 1662, and desultory whaling continued in Rhode Island until at least 1828. Shore whaling in Connecticut may have begun in the middle 1600’s, continuing there until at least 1718. Long Island shore whaling spanned the period 1650–1924. From its Dutch origins in the 1630’s, a persistent shore whaling enterprise developed in Delaware Bay and along the New Jersey shore. Although this activity was most profi table in New Jersey in the early 1700’s, it continued there until at least the 1820’s. Whaling in all areas of the northeastern United States was seasonal, with most catches in the winter and spring. Historically, right whales appear to have been essentially absent from coastal waters south of Maine during the summer and autumn. Based on documented references to specific whale kills, about 750–950 right whales were taken between Maine and Delaware, from 1620 to 1924. Using production statistics in British customs records, the estimated total secured catch of right whales in New England, New York, and Pennsylvania between 1696 and 1734 was 3,839 whales based on oil and 2,049 based on baleen. After adjusting these totals for hunting loss (loss-rate correction factor = 1.2), we estimate that 4,607 (oil) or 2,459 (baleen) right whales were removed from the stock in this region during the 38-year period 1696–1734. A cumulative catch estimate of the stock’s size in 1724 is 1,100–1,200. Although recent evidence of occurrence and movements suggests that right whales continue to use their traditional migratory corridor along the U.S. east coast, the catch history indicates that this stock was much larger in the 1600’s and early 1700’s than it is today. Right whale hunting in the eastern United States ended by the early 1900’s, and the species has been protected throughout the North Atlantic since the mid 1930’s. Among the possible reasons for the relatively slow stock recovery are: the very small number of whales that survived the whaling era to become founders, a decline in environmental carrying capacity, and, especially in recent decades, mortality from ship strikes and entanglement in fishing gear.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The abundance of the common starfish, Asterias forbesi, fluctuates widely over time. The starfish is a predator of pre-recruit northern quahogs, Mercenaria mercenaria. During the 1990’s, starfish became scarce in Raritan Bay and Long Island Sound. Quahog populations concurrently erupted in abundance and quahog landings have risen sharply in both locations. The extensive scale of this observation would seem to imply a cause and effect; at the least, both populations may be responding differently to a large scale exogenous factor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oyster landings in the United States and Canada have been based mainly on three species, the native eastern oyster, Crassostrea virginica, native Olympia oyster, Ostreola conchaphila, and introduced Pacific oyster, C. gigas. Landings reached their peak of around 27 million bushels/year in the late 1800's and early 1900's when eastern oysters were a common food throughout the east coast and Midwest. Thousands of people were involved in harvesting them with tongs and dredges and in shucking, canning, packing, and transporting them. Since about 1906, when the United States passed some pure food laws, production has declined. The causes have been lack of demand, siltation of beds, removal of cultch for oyster larvae while harvesting oysters, pollution of market beds, and oyster diseases. Production currently is about 5.6 million bushels/year.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

On an early fall day in September 1962 I sat quietly, thoughtfully, at my large desk in a newly renovated corner office in the old Crane wing of the Lillie Building, Marine Biological Laboratory (MBL), Woods Hole, Massachusetts. Looking out through high, ancient windows, I could see the busy main street of Woods Hole in the foreground, Martha's Vineyard beyond, behind me the MBL Stone Candle House, across the street the Woods Hole Oceanographic Institution (WHOI) and to the far right, the Biological Laboratory of the Bureau of Commercial Fisheries (BCF)(Fig. 1). Down the inner hall from my office stretched renovated quarters for the fledgling, ongoing, year-round MBL Systematics-Ecology Program (SEP), which I had been invited to direct.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reviews and analyzes the major factors constraining the development of salmon culture in the United States. A brief review of economic factors in the seafood sector contributing to the industry's recent growth is offered, and the present status of the major producing regions is summarized. The major constraints, which include marketing problems, policy and regulatory constraints, production costs, disease, financiing, and environmental uncertainty, are discussed, followed by recommendations for improving the industry's development.