144 resultados para U.S. Fish and Wildlife Service.
Resumo:
A workshop was held 3-5 October 2002 in Gainesville, Florida, USA to discuss management, conservation and trade in Caiman yacare. Twenty five official participants represented the four yacare range states (Argentina, Bolivia, Brazil, Paraguay), Venezuela, USA, the meeting sponsors (US Fish and Wildlife Service, CITES Secretariat, Louisiana Fur and Alligator Council), TRAFFIC Sur America and Crocodile Specialist Group. A series of country reports detailing yacare management in the four range states were distributed in Spanish and English prior to the meeting and presentations on these and on general principles of crocodilian harvest, conservation and management provided the basis for the discussions. Three working groups considered: • Requirements and field techniques for field data collection. • Requirements and techniques for regulation of harvest. • Requirements and processes for regulation of trade and export. Written reports of working groups and a plenary drafting session were finalized during the meeting and distributed, with the country reports, to participants. The workshop drafted a framework for caiman management and regulation that could be used as a template and adapted for use in each range state. The meeting agreed to convene an ad-hoc working group of range state representatives to continue discussions on the harmonization of caiman management into the future.
Resumo:
This report wi11 focus largely on the suborders Gammaridea, Caprellidea, and Hyperiidea because of their importance in coastal areas of the northeast Pacific Ocean. (PDF contains 27 pages)
Resumo:
Three genetically distinct groups: British Columbia to northern California, Southern California to the northern Baja peninsula, and central and southern Baja California. (PDF contains 21 pages)
Resumo:
This paper summarizes current information on the American shad, Alosa sapidissima, and describes the species and its fishery. Emphasis is placed on (1) life history of the fish, (2) condition of the fishery by State and water areas in 1960 compared to 1896 when the last comprehensive description was made, (3) factors responsible for decline in abundance, and (4) management measures. The shad fishery has changed little over the past three-quarters of a century, except in magnitude of yield. Types of shad-fishing gear have remained relatively unchanged, but many improvements have been made in fishing techniques, mostly to achieve economy. In 1896 the estimated catch was more than 50 million pounds. New Jersey ranked first in production with about 14 million pounds, and Virginia second with 11 million pounds. In 1960 the estimated catch was slightly more than 8 million pounds. Maryland ranked first in production with slightly more than 1.5 million pounds, Virginia second with slightly less than 1.4 million pounds, and North Carolina third with about 1.3 million pounds. Biological and economic factors blamed for the decline in shad abundance, such as physical changes in the environment, construction of dams, pollution, over-fishing, and natural cycles of abundance, are discussed. Also discussed are methods used for the rehabilitation and management of the fishery, such as artificial propagation, installation of fish-passage facilities at impoundments, and fishing regulations. With our present knowledge, we can manage individual shad populations; but, we probably cannot restore the shad to its former peak of abundance.
Resumo:
Subsistence food items can be a health concern in rural Alaska because community members often rely on fish and wildlife resources not routinely monitored for persistent bioaccumulative contaminants and pathogens. Subsistence activities are a large part of the traditional culture, as well as a means of providing protein in the diets for Tribal members. In response to the growing concerns among Native communities, contaminant body burden and histopathological condition of chum and sockeye salmon (Oncorhynchus keta and Oncorhynchus nerka) and the shellfish cockles and softshell clams (Clinocardium nuttallii and Mya arenaria) were assessed. In the Spring of 2010, the fish and shellfish were collected from traditional subsistence harvest areas in the vicinity of Nanwalek, Port Graham, and Seldovia, AK, and were analyzed for trace metals and residues of organic contaminants routinely monitored by the NOAA National Status & Trends Program (NS&T). Additionally, the fish and shellfish were histologically characterized for the presence, prevalence and severity of tissue pathology, disease, and parasite infection. The fish and shellfish sampled showed low tissue contamination, and pathologic effects of the parasites and diseases were absent or minimal. Taken together, the results showed that the fish and shellfish were healthy and pose no safety concern for consumption. This study provides reliable chemistry and histopathology information for local resource managers and Alaska Native people regarding subsistence fish and shellfish use and management needs.
Resumo:
The US Fish and Wildlife Service Cape Romain National Wildlife Refuge (CRNWR) and the Center for Coastal Environmental Health and Biomolecular Research (CCEHBR) at Charleston are interested in assessing the status of our coastal resources in light of increased coastal development and recreational use. Through an Interagency Agreement (FWS #1448-40181-00-H-001), an ecological characterization was undertaken to describe the status of and potential impacts to resources at CRNWR. This report describes historic fisheries-independent or non-commercial data relevant to CRNWR that can be used to evaluate the role of the Refuge as habitat for nearshore and offshore fish species. The purpose of this document is two-fold, first to give resource managers an understanding of fisheries data that have been collected over the years and, second, to illustrate how these data can be applied to address specific management issues. This report provides an overview of historic fisheries data collected along the southeast coast, as well as basic summaries of that data relevant to CRNWR, indicating how these data can be used to address specific questions of interest to Refuge managers and biologists.
Resumo:
From the 1940s until 2003, portions of the island of Vieques, a municipality within the Commonwealth of Puerto Rico, were used by the US Navy as a base and training facility, resulting in development and zoning history that differ in comparison to other Caribbean islands. The majority of former Navy lands are now under the jurisdiction of the Department of the Interior’s Fish and Wildlife Service as a National Wildlife Refuge, while a smaller percentage of land was transferred to the Vieques municipality and the Puerto Rico Conservation Trust. An analysis of the distribution and status of the marine resources is timely in light of the recent land transfer, increases in development and tourism, and potential changes in marine zoning around the island. To meet this need, NOAA’s Biogeography Branch, in cooperation with the Office of Response and Restoration and other local and regional partners, conducted Part I of an ecological characterization to integrate historical data and research into a synthesis report. The overall objective of this report is to provide resource managers and residents a comprehensive characterization of the marine resources of Vieques to support research, monitoring, and management. For example, knowledge of the spatial distribution of physical features, habitats, and biological communities is necessary to make an informed decision of the establishment and placement of a marine protected area (MPA). The report is divided into chapters based on the physical environment (e.g., climate, geology, bathymetry), habitat types (e.g., reefs and hardbottom, seagrasses, mangroves) and major faunal groups (e.g. fish, turtles, birds). Each section includes five subsections: an overview, description of the relevant literature, methods of analysis, information on the distribution, status and trends of the particular resource, and a discussion of ecological linkages with other components of the Vieques marine ecosystem and surrounding environment. The physical environment of Vieques is similar to other islands within the Greater Antilles chain, with some distinctions. The warm, tropical climate of Vieques, mediated by the northeasterly trade winds, is characterized by a dry season (December-April) and a rainy season (May-November), the latter of which is characterized by the occasional passage of tropical cyclones. Compared to mainland Puerto Rico, Vieques is characterized by lower elevation, less annual precipitation, and higher average temperatures. The amount of annual precipitation also varies spatially within Vieques, with the western portion of the island receiving higher amounts of rainfall than further east. While the North Equatorial Current dominates the circulation pattern in the Greater Antilles region, small scale current patterns specific to Vieques are not as well characterized. These physical processes are important factors mitigating the distribution and composition of marine benthic habitats around Vieques. In general, the topography of Vieques is characterized by rolling hills. Mt. Pirata, the tallest point at 301 m, is located near the southwest coast. In the absence of island wide sedimentation measurements, information on land cover, slope, precipitation, and soil type were used to estimate relative erosion potential and sediment delivery for each watershed. While slope and precipitation amount are the primary driving factors controlling runoff, land use practices such as urban development, military activity, road construction, and agriculture can increase the delivery of pollution and sediments to coastal waters. Due to the recent land transfer, increased development and tourism is expected, which may result in changes in the input of sediments to the coastal environment.
Resumo:
For more than 25 years all sea turtle products have been prohibited from international commerce by the 170-member nations of the Convention on International Trade in Endangered Species (CITES). Sea turtles continue to be threatened by direct take (including poaching) and illegal trade despite multi-national protection efforts. Although take may contribute significantly to sea turtle decline, illegal take is difficult to measure since there are few quantified records associated with legal fisheries and fewer still for illegal take (poaching). We can, however, quantify one portion of the illegal sea turtle trade by determining how many illegal products were seized at United States ports of entry over a recent 10-year period. The United States Fish and Wildlife Service (USFWS) oversees the import and export of wildlife and wildlife products, ensuring that wildlife trade complies with United States laws and international treaties. Additionally, the USFWS has legal authority to target suspected illegal wildlife activity through undercover and field investigations. In an effort to assess the scale of illegal sea turtle take and trade, we have conducted a 10-year (1994 – 2003) review of the law enforcement database maintained by the USFWS. This database tracks the number and type of wildlife cases, the quantity of seized products, and the penalties assessed against violators. These data are minimum estimates of the sea turtle products passing through the United States borders, as smuggled wildlife is oftentimes not detected.
Resumo:
Charles Henry Gilbert (1859-1928) was a pioneering ichthyologist who made major contributions to the study of fishes of the American West. As chairman of the Department ofZoology at Leland Stanford Junior University in Palo Alto, Calif., during 1891-1925, Gilbert was extremely devoted to his work and showed little patience with those ofa different mindset. While serving as Naturalist-in-Charge of the U.S. Fish Commission Steamer Albatross during her exploratory expedition to the Hawaiian Islands in 1902, Gilbert engaged in an acrimonious feud with the ship's captain, Chauncey Thomas, Jr. (1850-1919), U.S.N., over what Gilbert perceived to be an inadequate effort by the captain. This essay focuses on the conflict between two strong figures, each operatingf rom different world views, and each vying for authority. Despite the difficulties these two men faced, the voyage of the Albatross in 1902 must be considered a success, as reflected by the extensive biological samples collected, the many new species of animals discovered, and the resulting publication of important scientific papers.
Resumo:
Scientific and anecdotal observations during recent decades have suggested that the structure and function of the coral reef ecosystems around St. John, U.S. Virgin Islands have been impacted adversely by a wide range of environmental stressors. Major stressors included the mass die-off of the long-spined sea urchin (Diadema antillarum) in the early 1980s, a series of hurricanes (David and Frederick in 1979, and Hugo in 1989), overfishing, mass mortality of Acropora species and other reef-building corals due to disease and several coral bleaching events. In response to these adverse impacts, the National Centers for Coastal Ocean Science (NCCOS), Center for Coastal Monitoring and Assessment, Biogeography Branch (CCMA-BB) collaborated with federal and territorial partners to characterize, monitor, and assess the status of the marine environment around the island from 2001 to 2012. This 13-year monitoring effort, known as the Caribbean Coral Reef Ecosystem Monitoring Project (CREM), was supported by the NOAA Coral Reef Conservation Program as part of their National Coral Reef Ecosystem Monitoring Program. This technical memorandum contains analysis of nine years of data (2001-2009) from in situ fish belt transect and benthic habitat quadrat surveys conducted in and around the Virgin Islands National Park (VIIS) and the Virgin Islands Coral Reef National Monument (VICR). The purpose of this document is to: 1) Quantify spatial patterns and temporal trends in (i) benthic habitat composition and (ii) fish species abundance, size structure, biomass, and diversity; 2) Provide maps showing the locations of biological surveys and broad-scale distributions of key fish and benthic species and assemblages; and 3) Compare benthic habitat composition and reef fish assemblages in areas under NPS jurisdiction with those in similar areas not managed by NPS (i.e., outside of the VIIS and VICR boundaries). This report provides key information to help the St. John management community and others understand the impacts of natural and man-made perturbations on coral reef and near-shore ecosystems. It also supports ecosystem-based management efforts to conserve the region’s coral reef and related fauna while maintaining the many goods and ecological services that they offer to society.
Resumo:
This report provides baseline biological data on fishes, corals and habitats in Coral and Fish Bays, St. John, USVI. A similar report with data on nutrients and contaminants in the same bays is planned to be completed in 2013. Data from NOAA’s long-term Caribbean Coral Reef Ecosystem Monitoring program was compiled to provide a baseline assessment of corals, fishes and habitats from 2001 to 2010, data needed to assess the impacts of erosion control projects installed from 2010 to 2011. The baseline data supplement other information collected as part of the USVI Watershed Stabilization Project, a project funded by the American Recovery and Reinvestment Act of 2009 and distributed through the NOAA Restoration Center, but uses data which is not within the scope of ARRA funded work. We present data on 16 ecological indicators of fishes, corals and habitats. These indicators were chosen because of their sensitivity to changes in water quality noted in the scientific literature (e.g., Rogers 1990, Larsen and Webb 2009). We report long-term averages and corresponding standard errors, plot annual averages, map indicator values and list inventories of coral and fish species identified among surveys. Similar data will be needed in the future to make rigorous comparisons and determine the magnitude of any impacts from watershed stabilization.
Resumo:
The Channel Islands—sometimes called the Galapagos of North America—are known for their great beauty, rich biodiversity, cultural heritage, and recreational opportunities. In 1980, in recognition of the islands’ importance, the United States Congress established a national park encompassing 5 of California’s Channel Islands (Santa Barbara, Anacapa, Santa Cruz, Santa Rosa, and San Miguel Islands) and waters within 1 nautical mile of the islands. In the same year, Congress declared a national marine sanctuary around each of these islands, including waters up to 6 nautical miles offshore. Approximately 60,000 people visit the Channel Islands each year for aquatic recreation such as fishing, sailing, kayaking, wildlife watching, surfing, and diving. Another 30,000 people visit the islands for hiking, camping, and sightseeing. Dozens of commercial fishing boats based in Santa Barbara, Ventura, Oxnard, and other ports go to the Channel Islands to catch squid, spiny lobster, sea urchin, rockfish, crab, sheephead, flatfish, and sea cucumber, among other species. In the past few decades, advances in fishing technology and the rising number of fishermen, in conjunction with changing ocean conditions and diseases, have contributed to declines in some marine fishes and invertebrates at the Channel Islands. In 1998, citizens from Santa Barbara and Ventura proposed establishment of no-take marine reserves at the Channel Islands, beginning a 4-year process of public meetings, discussions, and scientific analyses. In 2003, the California Fish and Game Commission designated a network of marine protected areas (MPAs) in state waters around the northern Channel Islands. In 2006 and 2007, the National Oceanic and Atmospheric Administration (NOAA) extended the MPAs into the national marine sanctuary’s deeper, federal waters. To determine if the MPAs are protecting marine species and habitats, scientists are monitoring ecological changes. They are studying changes in habitats; abundance and size of species of interest; the ocean food web and ecosystem; and movement of fish and invertebrates from MPAs to surrounding waters. Additionally, scientists are monitoring human activities such as commercial and recreational fisheries, and compliance with MPA regulations. This booklet describes some results from the first 5 years of monitoring the Channel Islands MPAs. Although 5 years is not long enough to determine if the MPAs will accomplish all of their goals, this booklet offers a glimpse of the changes that are beginning to take place and illustrates the types of information that will eventually be used to assess the MPAs’ effectiveness. (PDF contains 24 pages.)
Resumo:
Foreword [pdf, < 0.1 MB] Acknowledgements PHASE 1 [pdf, 0.2 MB] Summary of the PICES/NPRB Workshop on Forecasting Climate Impacts on Future Production of Commercially Exploited Fish and Shellfish (July 19–20, 2007, Seattle, U.S.A.) Background Links to Other Programs Workshop Format Session I. Status of climate change scenarios in the PICES region Session II. What are the expected impacts of climate change on regional oceanography and what are some scenarios for these drivers for the next 10 years? Session III. Recruitment forecasting Session IV. What models are out there? How is climate linked to the model? Session V. Assumptions regarding future fishing scenarios and enhancement activities Session VI Where do we go from here? References Appendix 1.1 List of Participants PHASE 2 [pdf, 0.7 MB] Summary of the PICES/NPRB Workshop on Forecasting Climate Impacts on Future Production of Commercially Exploited Fish and Shellfish (October 30, 2007, Victoria, Canada) Background Workshop Agenda Forecast Feasibility Format of Information Modeling Approaches Coupled bio-physical models Stock assessment projection models Comparative approaches Similarities in Data Requests Opportunities for Coordination with Other PICES Groups and International Efforts BACKGROUND REPORTS PREPARED FOR THE PHASE 2 WORKSHOP Northern California Current (U.S.) groundfish production by Melissa Haltuch Changes in sablefish (Anoplopoma fimbria) recruitment in relation to oceanographic conditions by Michael J. Schirripa Northern California Current (British Columbia) Pacific cod (Gadus macrocephalus) production by Caihong Fu and Richard Beamish Northern California Current (British Columbia) sablefish (Anoplopoma fimbria) production by Richard Beamish Northern California Current (British Columbia) pink (Oncorhynchus gorbuscha) and chum (O. keta) salmon production by Richard Beamish Northern California Current (British Columbia) ocean shrimp (Pandalus jordani) production by Caihong Fu Alaska salmon production by Anne Hollowed U.S. walleye pollock (Theragra chalcogramma) production in the eastern Bering Sea and Gulf of Alaska by Kevin Bailey and Anne Hollowed U.S. groundfish production in the eastern Bering Sea by Tom Wilderbuer U.S. crab production in the eastern Bering Sea by Gordon H. Kruse Forecasting Japanese commercially exploited species by Shin-ichi Ito, Kazuaki Tadokoro and Yasuhiro Yamanka Russian fish production in the Japan/East Sea by Yury Zuenko, Vladimir Nuzhdin and Natalia Dolganova Chum salmon (Oncorhynchus keta) production in Korea by Sukyung Kang, Suam Kim and Hyunju Seo Jack mackerel (Trachurus japonicus) production in Korea by Jae Bong Lee and Chang-Ik Zhang Chub mackerel (Scomber japonicus) production in Korea by Jae Bong Lee, Sukyung Kang, Suam Kim, Chang-Ik Zhang and Jin Yeong Kim References Appendix 2.1 List of Participants PHASE 3 [pdf, < 0.1 MB] Summary of the PICES Workshop on Linking Global Climate Model Output to (a) Trends in Commercial Species Productivity and (b) Changes in Broader Biological Communities in the World’s Oceans (May 18, 2008, Gijón, Spain) Appendix 3.1 List of Participants Appendix 3.2 Workshop Agenda (Document contains 101 pages)