198 resultados para Trawl survey
Resumo:
Three aspects of a survey bottom trawl performance—1) trawl geometry (i.e., net spread, door spread, and headrope height); 2) footrope distance off-bottom; and 3) bridle distance off-bottom—were compared among hauls by using either of two autotrawl systems (equal tension and net symmetry) and hauls conducted with towing cables of equal length and locked winches. The effects of environmental conditions, vessel heave, crabbing (i.e., the difference between vessel heading and actual vessel course over ground), and bottom current on trawl performance with three trawling modes were investigated. Means and standard deviations of trawl geometry measures were not significantly different between autotrawl and locked-winch systems. Bottom trawls performed better with either autotrawl system as compared to trawling with locked winches by reducing the variance and increasing the symmetry of the footrope contact with the bottom. The equal tension autotrawl system was most effective in counteracting effects of environmental conditions on footrope bottom contact. Footrope bottom contact was most inf luenced by environmental conditions during tows with locked winches. Both of the autotrawl systems also reduced the variance and increased the symmetry of bridle bottom contact. Autotrawl systems proved to be effective in decreasing the effects of environmental factors on some aspects of trawl performance and, as a result, have the potential to reduce among-haul variance in catchability of survey trawls. Therefore, by incorporating an autotrawl system into standard survey procedures, precision of survey estimates of relative abundance
Resumo:
Since 1984, annual bottom trawl surveys of the west coast (California–Washington) upper continental slope (WCUCS) have provided information on the abundance, distribution, and biological characteristics of groundfish resources. Slope species of the deep-water complex (DWC) are of particular importance and include Dover sole, Microstomus pacificus; sablefish, Anoplopoma fimbria; shortspine thornyhead, Sebastolobus alascanus; and longspine thornyhead, S. altivelis. In the fall of 1994, we conducted an experimental gear research cruise in lieu of our normal survey because of concerns about the performance of the survey trawl. The experiment was conducted on a soft mud bottom at depths of 460–490 m off the central Oregon coast. Treatments included different combinations of door-bridle rigging, groundgear weight, and scope length. The experimental design was a 2 ´ 2 ´ 2 factorial within a randomized complete-block. Analysis of variance was used to examine the effects of gear modifications on the engineering performance of the trawl (i.e. trawl dimensions, variation in trawl dimensions, and door attitude) and to determine if catch rates in terms of weight and number of DWC species and invertebrates were affected by the gear modifications. Trawl performance was highly variable for the historically used standard trawl configuration. Improvements were observed with the addition of either a 2-bridle door or lighter ground gear. Changes in scope length had relatively little effect on trawl performance. The interaction of door bridle and ground gear weight had the most effect on trawl performance. In spite of the standard trawl’s erratic performance, catch rates of all four DWC species and invertebrates were not significantly different than the 2-bridle/heavy combination, which did the best in terms of engineering performance. The most important factor affecting DWC catch rates was ground gear. Scope length and the type of door bridle had little effect on DWC catch rates. Subsequent revisions to survey gear and towing protocol and their impact on the continuity of the slope survey time series are discussed.
Resumo:
We have formulated a model for analyzing the measurement error in marine survey abundance estimates by using data from parallel surveys (trawl haul or acoustic measurement). The measurement error is defined as the component of the variability that cannot be explained by covariates such as temperature, depth, bottom type, etc. The method presented is general, but we concentrate on bottom trawl catches of cod (Gadus morhua). Catches of cod from 10 parallel trawling experiments in the Barents Sea with a total of 130 paired hauls were used to estimate the measurement error in trawl hauls. Based on the experimental data, the measurement error is fairly constant in size on the logarithmic scale and is independent of location, time, and fish density. Compared with the total variability of the winter and autumn surveys in the Barents Sea, the measurement error is small (approximately 2–5%, on the log scale, in terms of variance of catch per towed distance). Thus, the cod catch rate is a fairly precise measure of fish density at a given site at a given time.
Resumo:
Under the implementation of the fisheries management plan (IFMP) for Lake Victoria result area 4, bottom trawl monitoring surveys are undertaken to monitor changes in the status of the fish stocks and environment of Lake Victoria. Trawl together with the lake-wide Hydroacoustic surveys give a reflection on the status of fish stocks in the lake to guide management decisions The National working group for bottom trawl surveys in Uganda undertakes these surveys within the Uganda sector of Lake Victoria. For the purpose of this survey, the Uganda sector of Lake Victoria is divided into three zones. A cruise lasting twenty days is conducted in two phases (two legs) 13 days covering Zones I and II and 7 days in Zone III.
Resumo:
Summary: The offshore shelf and canyon habitats of the OCNMS (Fig. 1) are areas of high primary productivity and biodiversity that support extensive groundfish fisheries. Recent acoustic surveys conducted in these waters have indicated the presence of hard-bottom substrates believed to harbor unique deep-sea coral and sponge assemblages. Such fauna are often associated with shallow tropical waters, however an increasing number of studies around the world have recorded them in deeper, cold-water habitats in both northern and southern latitudes. These habitats are of tremendous value as sites of recruitment for commercially important fishes. Yet, ironically, studies have shown how the gear used in offshore demersal fishing, as well as other commercial operations on the seafloor, can cause severe physical disturbances to resident benthic fauna. Due to their exposed structure, slow growth and recruitment rates, and long life spans, deep-sea corals and sponges may be especially vulnerable to such disturbances, requiring very long periods to recover. Potential effects of fishing and other commercial operations in such critical habitats, and the need to define appropriate strategies for the protection of these resources, have been identified as a high-priority management issue for the sanctuary. To begin addressing this issue, an initial pilot survey was conducted June 1-12, 2004 at six sites in offshore waters of the OCNMS (Fig. 2, average depths of 147-265 m) to explore for the presence of deep-sea coral/sponge assemblages and to look for evidence of potential anthropogenic impacts in these critical habitats. The survey was conducted on the NOAA Ship McARTHUR-II using the Navy’s Phantom DHD2+2 remotely operated vehicle (ROV), which was equipped with a video camera, lasers, and a manipulator arm for the collection of voucher specimens. At each site, a 0.1-m2 grab sampler also was used to collect samples of sediments for the analysis of macroinfauna (> 1.0 mm), total organic carbon (TOC), grain size, and chemical contaminants. Vertical profiles of salinity, dissolved oxygen (DO), temperature, and pressure were recorded at each site with a small SeaCat conductivity-temperature-depth (CTD) profiler. Niskin bottles attached to the CTD also obtained near-bottom water samples in support of a companion study of microbial indicators of coral health and general ecological condition across these sites. All samples except the sediment-contaminant samples are being analyzed with present project funds. Original cruise plans included a total of 12 candidate stations to investigate (Fig. 3). However, inclement weather and equipment failures restricted the sampling to half of these sites. In spite of the limited sampling, the work completed was sufficient to address key project objectives and included several significant scientific observations. Foremost, the cruise was successful in demonstrating the presence of target deepwater coral species in these waters. Patches of the rare stony coral Lophelia pertusa, more characteristic of deepwater coral/sponge assemblages in the North Atlantic, were observed for the first time in OCNMS at a site in 271 meters of water. A large proportion of these corals consisted of dead and broken skeletal remains, and a broken gorgonian (soft coral) also was observed nearby. The source of these disturbances is not known. However, observations from several sites included evidence of bottom trawl marks in the sediment and derelict fishing gear (long lines). Preliminary results also support the view that these areas are important reservoirs of marine biodiversity and of value as habitat for demersal fishes. For example, onboard examination of 18 bottom-sediment grabs revealed benthic infaunal species representative of 14 different invertebrate phyla. Twenty-eight species of fishes from 11 families, including 11 (possibly 12) species of ommercially important rockfishes, also were identified from ROV video footage. These initial discoveries have sparked considerable interests in follow-up studies to learn more about the spatial extent of these assemblages and magnitude of potential impacts from commercial-fishing and other anthropogenic activities in the area. It is essential to expand our knowledge of these deep-sea communities and their vulnerability to potential environmental risks in order to determine the most appropriate management strategies. The survey was conducted under a partnership between NOAA’s National Centers for Coastal Ocean Science (NCCOS) and National Marine Sanctuary Program (NMSP) and included scientists from NCCOS, OCNMS, and several other west-coast State, academic, private, and tribal research institutions (see Section 4 for a complete listing of participating scientists). (PDF contains 20 pages)
Resumo:
The California Fish and Game Commission (Commission) has the authority to require one or any combination of Bycatch Reduction Device (BRD) types in the trawl fishery within California waters for Pacific ocean shrimp (Pandalus jordani), most commonly referred to as pink shrimp. The purpose of this report is to provide the Commission with the best available information about the BRDs used in the pink shrimp trawl fishery. The mandatory requirement for BRDs occurred in California in 2002, and in Oregon and Washington in 2003, resulting from an effort to minimize bycatch of overfished and quota managed groundfish species. Three types of BRDs currently satisfy the requirement for this device in the California fishery: 1) the Nordmøre grate (rigid-grate excluder); 2) soft-panel excluder; and 3) fisheye excluder; however, the design, specifications, and efficacy differ by BRD type. Although no data has been collected on BRDs directly from the California pink shrimp fishery, extensive research on the efficacy and differences among BRD types has been conducted by the Oregon Department of Fish and Wildlife (ODFW) since the mid-1990s. Rigid-grate excluders are widely considered to be the most effective of the three BRD types at reducing groundfish bycatch. Over 90 percent of the Oregon pink shrimp fleet use rigid-grate excluders. The majority of the current California pink shrimp fleet also uses rigid-grate excluders, according to a telephone survey conducted by the California Department of Fish and Game (Department) in 2007-2008 of pink shrimp fishermen who have been active in the California fishery in recent years. Hinged rigid-grate excluders have been developed in recent years to reduce the bending of the BRD on vessels that employ net reels to stow and deploy their trawl nets, and they have been used successfully on both single- and double-rig vessels in Oregon. Soft-panel excluders have been demonstrated to be effective at reducing groundfish bycatch, although excessive shrimp loss and other problems have also been associated with this design. Fisheye excluders have been used in the California fishery in the past, but they were disapproved in Oregon and Washington in 2003 because they were found to be less effective at reducing groundfish bycatch than other designs. The reputation of the United States west coast pink shrimp fishery as one of the cleanest shrimp fisheries in the world is largely attributed to the effectiveness of BRDs at reducing groundfish bycatch. Nevertheless, BRD research and development is still a relatively new field and additional modifications and methods may further reduce bycatch rates in the pink shrimp fishery.(PDF contains 12 pages.)
Resumo:
Over the last several years, concern has increased about the amount of man-made materials lost or discarded at sea and the potential impacts to the environment. The scope of the problem depends on the amounts and types of debris. One problem in making a regional comparison of debris is the lack of a standard methodology. The objective of this manual is to discuss designs and methodologies for assessment studies of marine debris. This manual has been written for managers, researchers, and others who are just entering this area of study and who seek guidance in designing marine debris surveys. Active researchers will be able to use this manual along with applicable references herein as a source for design improvement. To this end, the authors have synthesized their work and reviewed survey techniques that have been used in the past for assessing marine debris, such as sighting surveys, beach surveys, and trawl surveys, and have considered new methods (e.g., aerial photography). All techniques have been put into a general survey planning framework to assist in developing different marine debris surveys. (PDF file contains 100 pages.)
Resumo:
The objective of this study was to describe the physical and ichthyological changes occurring seasonally and annually in the south San Francisco Bay, based on the results of 2,561 otter trawl and water samples obtained between February 1973 and June 1982. Temperature varied predictably among seasons in a pattern that varied little between years. Salinity also underwent predictable seasonal changes but the pattern varied substantially between years. The most abundant species of fish were northern anchovy (Engraulis mordax), English sole (Parophrys vetulus), and shiner surfperch (Cymatogaster aggregata). The majority of the common fish species were most abundant during wet years and least abundant in dry years. Numeric diversity was highest during the spring and early summer, with no detectable interannual trends. Species composition changed extensively between seasons and between years, particularly years with extremely high or extremely low freshwater inflows. All the common species exhibited clustered spatial distributions. Such spatial clustering could affect the interpretation of data from estuarine sampling programs. Gobies (Family Gobiidae) were more abundant during flood tides than during ebb tides. English sole were significantly more abundant in shallower areas. Shiner surfperch showed significant differences in abundance between sample areas.(PDF file contains 28 pages.)
Resumo:
Thirteen hauls were made during the hydroacoustic survey of the Ugandan waters of Lake Victoria from 7-19 February 1999. Ten of the hauls were made above the oxycline which was clearly visible as a strong echo on the echogram at between 25 and 35 m depth in most of the sampled areas. The remaining three hauls targeted the oxycline. Approximate equal weights of Rastrineobola argentia and Haplocromine cichlids were caught in total, but with marked differences between hauls. Near the surface R. argentia dominated the catches. In midwater Haplochromines were dominant. At the oxycline Caridina niloticus was abundant
Resumo:
Survey standardization procedures can reduce the variability in trawl catch efficiency thus producing more precise estimates of biomass. One such procedure, towing with equal amounts of trawl warp on both sides of the net, was experimentally investigated for its importance in determining optimal trawl geometry and for evaluating the effectiveness of the recent National Oceanic and Atmospheric Administration (NOAA) national protocol on accurate measurement of trawl warps. This recent standard for measuring warp length requires that the difference between warp lengths can be no more than 4% of the distance between the otter doors measured along the bridles and footrope. Trawl performance data from repetitive towing with warp differentials of 0, 3, 5, 7, 9, 11, and 20 m were analyzed for their effect on three determinants of flatfish catch efficiency: footrope distance off-bottom, bridle length in contact with the bottom, and area swept by the net. Our results indicated that the distortion of the trawl caused by asymmetry in trawl warp length could have a negative inf luence on flatfish catch efficiency. At a difference of 7 m in warp length, the NOAA 4% threshold value for the 83112 Eastern survey trawl used in our study, we found no effect on the acous-tic-based measures of door spread, wing spread, and headrope height off-bottom. However, the sensitivity of the trawl to 7 m of warp offset could be seen as footrope distances off-bottom increased slightly (particularly in the center region of the net where flatfish escapement is highest), and as the width of the bridle path responsible for flatfish herding, together with the effective net width, was reduced. For this survey trawl, a NOAA threshold value of 4% should be considered a maximum. A more conservative value (less than 4%) would likely reduce potential bias in estimates of relative abundance caused by large differences in warp length approaching 7 m.
Resumo:
Bottom trawl surveys were conducted in the southwest monsoon season in 1996 (survey 1) and in the northeast monsoon season in 1996-97 (survey 2) throughout Vietnamese waters. The surveys mainly covered the depth zone 50-200 m but in the northeast monsoon season the depth zone 20-50 m was included in the northern and southern areas. Overall, 273 trawl hauls were conducted. The total biomass for Vietnamese waters in the depth zone 20-200 m was estimated at 700 000 t . Biomass estimates are given for the most abundant species. A relatively higher mean catch-per-unit effort (CPUE) was obtained from survey 2 than from survey 1 and in partcular at depth ranges 50-100 and 100-200 m in south Vietnam. Overall, the dominant families were Monacanthidae (34%), Carangidae (15%), Trichiuridae (9%) and Synodontidae (6%).
Resumo:
From 2002 through 2008, the Mississippi Laboratories of the NMFS Southeast Fisheries Science Center, NOAA, conducted fishery-independent bottom trawl surveys for continental shelf and outer-continental shelf deep-water fishes and invertebrates of the U.S. Gulf of Mexico (50–500 m bottom depths). Five-hundred and ninety species were captured at 797 bottom trawl locations. Standardized survey gear and randomly selected survey sites have facilitated development of a fishery-independent time series that characterizes species diversity, distributions, and catch per unit effort. The fishery-independent surveys provide synoptic descriptions of deep-water fauna potentially impacted by various anthropogenic factors.
Resumo:
Biomass estimates of several species of Alaskan rockfishes exhibit large interannual variations. Because rockfishes are long lived and relatively slow growing, large, short-term shifts in population abundance are not likely. We attribute the variations in biomass estimates to the high variability in the spatial distribution of rockfishes that is not well accounted for by the survey design currently used. We evaluated the performance of an experimental survey design, the Trawl and Acoustic Presence/Absence Survey (TAPAS), to reduce the variability in estimated biomass for Pacific ocean perch (Sebastes alutus). Analysis of archived acoustic backscatter data produced an acoustic threshold for delineating potential areas of high (“patch”) and low (“background”) catch per unit of effort (CPUE) in real time. In 2009, we conducted a 12-day TAPAS near Yakutat, Alaska. We completed 59 trawls at 19 patch stations and 40 background stations. The design performed well logistically, and Pacific ocean perch (POP) accounted for 55% of the 31 metric tons (t) of the catch from this survey. The resulting estimates of rockfish biomass were slightly less precise than estimates from simple random sampling. This difference in precision was due to the weak relationship of CPUE to mean volume backscattering and the relatively low variability of POP CPUE encountered. When the data were re-analyzed with a higher acoustic threshold than the one used in the field study, performance was slightly better with this revised design than with the original field design. The TAPAS design could be made more effective by establishing a stronger link between acoustic backscatter and CPUE and by deriving an acoustic threshold that allows better identification of backscatter as that from the target species.
Resumo:
A statistical comparison of standing stock density estimates (Kg/hectare) from 26 UNDP/FAO 1%9 thru 70 and 63 EAFFRO 1976 bottom trawl surveys revealed the following; 1) Statistically significant differences between mean density values at 4 of 7 depths {4-9 to 30-39 m}. 2) The 1969 thru 70 UNDP/FAO Values were higher at the 4 levels. 3) No statistically significant menn density value differences at 3 depths (40-49 to 60-69 m), but decreased values for the 1976 EAFFRO survey at 40-49 and 50-59 m depth. It was concluded from these comparisons that no capital investment should be made into a trawler industry for fish meal production in the Kenya waters of Lake Victoria until further bottom trawl surveys can be conducted to either substantiate or disapprove these differences over the six year time span.
Resumo:
This project was done for identifying and survey on distribution and diversity of true crabs in inter tidal and sub tidal zones of the Gulf of Oman (Sistan and Baluchistan province) during two year from 2009 to 2010. Specimens of inter tidal zones were carried out at 10 stations and 8 stations from sub tidal. The specimens were collected by hand and dip-net from inter tidal and by trawl net from sub tidal regions, preserved in 70% alcohol and carried to the laboratory. A total of 37 species belonged to 17 families from inter tidal and 23 species belonged to 9 families from sub tidal were identified. Of which 54 species were identified up to species level. 2 species from Matutidae, 1 species from Eriphiidae, Menippidae, Pseudoziidae, Plagusidae, Varunidae, Camptandriidae, Dromiidae and Dorippidae, 2 species from Oziidae, 3 species from Epialtidae, 2 species from Majidae, 4 species from Pilumnidae, 12 species from Portunidae, 6 species from Xanthidae, 2 species from Grapsidae, 3 species from Dotillidae, 3 species from Macrophthalmidae, 3 species from Ocypodidae, 3 species from Calappidae, 2 species from Parthenopidae and 1 species from Galenidae were identified. All specimens are deposited in the Zoological Museum, University of Tehran (ZUTC). The results of the present study revealed that family Portunidae with 6 species from inter tidal and 9 species from sub tidal regions have the highest species richness among the 22 families. Maximum similarity (Sorenson's Index) was obtained among the stations Breis, Lipar, Pozm and Gordim, and minimum was obtained among the stations Chazire-Kharchang with Pasabandar, Beris, Lipar, Daria-Bozorg, Pozm and Gordim in intertidal regions. In sub tidal regions maximum similarity (Sorenson's Index) was obtained among the stations Pasa bandar with Berisand minimum was obtained among the stations Govatr with Ramin and Gordim, Ramin with Pozm. Also maximum species richness was observed at Tiss in inter tidal and Chabahar in sub tidal stations, whereas minimum was obtained at Beris, Pozm, Gordim and Lipar in inter tidal and Govatr and Pozm in sub tidal stations. Family Ocypodidae in inter tidal and Portunidae in sub tidal regions have the highest distribution. In all of the species length and Breadth of carapace showed significant relation.