57 resultados para Seattle


Relevância:

10.00% 10.00%

Publicador:

Resumo:

From the mid-1950's to the mid-1960's a series of quantitative surveys of the macrobenthic invertebrate fauna were conducted in the offshore New England region (Maine to Long Island, New York). The surveys were designed to 1) obtain measures of macrobenthic standing crop expressed in terms of density and biomass; 2) determine the taxonomic composition of the fauna (ca. 567 species); 3) map the general features of macrobenthic distribution; and 4) evaluate the fauna's relationships to water depth, bottom type, temperature range, and sediment organic carbon content. A total of 1,076 samples, ranging from 3 to 3,974 m in depth, were obtained and analyzed. The aggregate macrobenthic fauna consists of 44 major taxonomic groups (phyla, classes, orders). A striking fact is that only five of those groups (belonging to four phyla) account for over 80% of both total biomass and number of individuals of the macrobenthos. The five dominant groups are Bivalvia, Annelida, Amphipoda, Echninoidea, and Holothuroidea. Other salient features pertaining to the macrobenthos of the region are the following: substantial differences in quantity exist among different geographic subareas within the region, but with a general trend that both density and biomass increase from northeast to southwest; both density and biomass decrease with increasing depth; the composition of the bottom sediments significantly influences both the kind and quantity of macrobenthic invertebrates, the largest quantities of both measures of abundance occurring in the coarser grained sediments and diminishing with decreasing particle size; areas with marked seasonal changes in water temperature support an abundant and diverse fauna, whereas a uniform temperature regime is associated with a sparse, less diverse fauna; and no detectable trends are evident in the quantitative composition of the macrobenthos in relation to sediment organic carbon content. (PDF file contains 246 pages.)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The broad scale features in the horizontal, vertical, and seasonal distribution of phytoplankton chlorophyll a on the northeast U.S. continental shelf are described based on 57,088 measurements made during 78 oceanographic surveys from 1977 through 1988. Highest mean water column chlorophyll concentration (Chlw,) is usually observed in nearshore areas adjacent to the mouths of the estuaries in the Middle Atlantic Bight (MAB), over the shallow water on Georges Bank, and a small area sampled along the southeast edge of Nantucket Shoals. Lowest Chlw «0.125 ug l-1) is usually restricted to the most seaward stations sampled along the shelf-break and the central deep waters in the Gulf of Maine. There is at least a twofold seasonal variation in phytoplankton biomass in all areas, with highest phytoplankton concentrations (m3) and highest integrated standing stocks (m2) occurring during the winter-spring (WS) bloom, and the lowest during summer, when vertical density stratification is maximal. In most regions, a secondary phytoplankton biomass pulse is evident during convective destratification in fall, usually in October. Fall bloom in some areas of Georges Bank approaches the magnitude of the WS-bloom, but Georges Bank and Middle Atlantic Bight fall blooms are clearly subordinate to WS-blooms. Measurements of chlorophyll in two size-fractions of the phytoplankton, netplankton (>20 um) and nanoplankton «20 um), revealed that the smaller nanoplankton are responsible for most of the phytoplankton biomass on the northeast U.S. shelf. Netplankton tend to be more abundant in nearshore areas of the MAB and shallow water on Georges Bank, where chlorophyll a is usually high; nanoplankton dominate deeper water at the shelf-break and deep water in the Gulf of Maine, where Chlw is usually low. As a general rule, the percent of phytoplankton in the netplankton size-fraction increases with increasing depth below surface and decreases proceeding offshore. There are distinct seasonal and regional patterns in the vertical distribution of chlorophyll a and percent netplankton, as revealed in composite vertical profiles of chlorophyll a constructed for 11 layers of the water column. Subsurface chlorophyll a maxima are ubiquitous during summer in stratified water. Chlorophyll a in the subsurface maximum layer is generally 2-8 times the concentration in the overlying and underlying water and approaches 50 to 75% of the levels observed in surface water during WS-bloom. The distribution of the ratio of the subsurface maximum chlorophyll a to surface chlorophyll a (SSR) during summer parallels the shelfwide pattern for stability, indexed as the difference in density (sigma-t) between 40 m and surface (stability 40. The weakest stability and lowest SSR's are found in shallow tidally-mixed water on Georges Bank; the greatest stability and highest SSR's (8-12:1) are along the mid and outer MAB shelf, over the winter residual water known as the "cold band." On Georges Bank, the distribution of SSR and the stability40 are roughly congruent with the pattern for maximum surface tidal current velocity, with values above 50 cms-1 defining SSR's less than 2:1 and the well-mixed area. Physical factors (bathymetry, vertical mixing by strong tidal currents, and seasonal and regional differences in the intensity and duration of vertical stratification) appear to explain much of the variability in phytoplankton chlorophyll a throughout this ecosystem. (PDF file contains 126 pages.)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The condition of soft-textured flesh in commercially harvested sablefish, Anoplopoma fimbria, from southeastern Alaska was investigated by National Marine Fisheries Service (NMFS) scientists from the Alaska Fisheries Science Center’s Auke Bay Laboratories (ABL) in Alaska and the Northwest Fisheries Science Center in Seattle, Wash. Sablefish were sampled by longline, pot, and trawl at five sites around Chichagof Island at depths of 259–988 m in the summer of 1985 and at depths of 259–913 m in the winter of 1986. At the time of capture and data collection, sablefish were categorized as being “firm” or “soft” by visual and tactile examination, individually weighed, measured for length, and sexed. Subsamples of the fish were analyzed and linear regressions and analyses of variance were performed on both the summer (n = 242) and winter (n = 439) data for combinations of chemical and physical analyses, depth of capture, weight vs. length, flesh condition, gonad condition, and sex. We successfully identified and selected sablefish with firm- and soft-textured flesh by tactile and visual methods. Abundance of firm fish in catches varied by season: 67% in winter and 40% in summer. Winter catches may give a higher yield than summer catches. Abundance of firm fish catches also varied with depth. Firm fish were routinely found shallower than soft fish. The highest percentage of firm fish were found at depths less than 365 m in summer and at 365–730 m in winter, whereas soft fish were usually more abundant at depths greater than 731 m. Catches of firm fish declined with increasing depth. More than 80% of the fish caught during winter at depths between 365 and 730 m had firm flesh, but this declined to 48% at these depths in summer. Longlines and pots caught similar proportions of firm and soft fish with both gears catching more firm than soft fish. Trawls caught a higher proportion of soft fish compared to longlines and pots in winter. Chemical composition of “firm” and “soft” fish differed. On average “soft” fish had 14% less protein, 12% more lipid, and 3% less ash than firm fish. Cooked yields from sablefish with soft-textured flesh were 31% less than cooked yields from firm fish. Sablefish flesh quality (firmness) related significantly to the biochemistry of white muscle with respect to 11 variables. Summer fish of all flesh conditions averaged 6% heavier than winter fish. Regulating depth of fishing could increase the yield from catches, but the feasibility and benefits from this action will require further evaluation and study. Results of this study provide a basis for reducing the harvest of sablefish with soft flesh and may stimulate further research into the cause and effect relationship of the sablefish soft-flesh phenomenon.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

William Francis Thompson (1888–1965) was a preeminent fishery scientist of the early to mid twentieth century. Educated at Stanford University in California (B.A. 1911, Ph.D. 1930), Thompson conducted pioneering research on the Pacific halibut, Hippoglossus stenolepis, from 1914 to 1917 for the British Columbia Provincial Fisheries Department. He then directed marine fisheries research for the State of California from 1917 to 1924, was Director of Investigations for the International Fisheries Commission from 1924 to 1939, and Director of the International Pacific Salmon Fisheries Commission from 1937 to 1942. He was also Director of the School of Fisheries, University of Washing-ton, Seattle, from 1930 to 1947. Thompson was the founding director in 1947 of the Fisheries Research Institute at the University of Washington and served in that capacity until his retirement in 1958. He was a dominant figure in fisheries research of the Pacific Northwest and influenced a succession of fishery scientists with his yield-based analysis of fishery stocks, as opposed to studying the fishes’environment. Will Thompson was also a major figure in education, and many of his former students attained leadership positions in fisheries research and administration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stichaeidae, commonly referred to as pricklebacks, are intertidal and subtidal fishes primarily of the North Pacific Ocean. Broad distribution in relatively inaccessible and undersampled habitats has contributed to a general lack of information about this family. In this study, descriptions of early life history stages are presented for 25 species representing 18 genera of stichaeid fishes from the northeastern Pacific Ocean, Bering Sea, and Arctic Ocean Basin. Six of these species also occur in the North Atlantic Ocean. Larval stages of 16 species are described for the first time. Additional information or illustrations intended to augment previous descriptions are provided for nine species. For most taxa, we present adult and larval distributions, descriptions of morphometric, meristic, and pigmentation characters, and species comparisons, and we provide illustrations for preflexion through postflexion or transformation stages. New counts of meristic features are reported for several species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The genus Sebastes consists of over 100 fish species, all of which are viviparous and long-lived. Previous studies have presented schemes on the reproductive biology of a single targeted species of the genus Sebastes, but all appear to possess a similar reproductive biology as evidenced by this and other studies. This atlas stages major events during spermatogenesis, oogenesis, and embryogenesis, including atresia, in six species of Sebastes (S. alutus, S. elongatus, S. helvomaculatus, S. polyspinis, S. proriger, and S. zacentrus). Our study suggests that the male reproductive cycle of Sebastes is characterized by 11 phases of testicular development, with 10 stages of sperm development and 1 stage of spermatozoa atresia. Ovarian development was divided into 12 phases, with 10 stages of oocyte development, 1 stage of embryonic development, and 1 stage of oocyte atresia. Embryonic development up to parturition was divided into 33 stages following the research of Yamada and Kusakari (1991). Reproductive development of all six species examined followed the developmental classifications listed above which may apply to all species of Sebastes regardless of the number of broods produced annually. Multiple brooders vary in that not all ova are fertilized and progress to embryos; a proportion of ova are arrested at the pre-vitellogenic stage. Reproductive stage examples shown in this atlas use S. elongates for spermatic development, S. proriger for oocyte development, and S. alutus for embryological development, because opportunistic sampling only permitted complete analysis of each respective developmental phase for those species. The results of this study and the proposed reproductive phases complement the recommended scheme submitted by Brown-Peterson et al. (2011), who call for a standardization of terminology for describing reproductive development of fishes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Age and Growth Program at the Alaska Fisheries Science Center is tasked with providing age data in order to improve the basic understanding of the ecology and fisheries dynamics of Alaskan fish species. The primary focus of the Age and Growth Program is to estimate ages from otoliths and other calcified structures for age-structured modeling of commercially exploited stocks; however, the program has recently expanded its interests to include numerous studies on topics ranging from age estimate validation to the growth and life history of non-target species. Because so many applications rely upon age data and particularly upon assurances as to their accuracy and precision, the Age and Growth Program has developed this practical guide to document the age determination of key groundfish species from Alaskan waters. The main objective of this manual is to describe techniques specific to the age determination of commercially and ecologically important species studied by the Age and Growth Program. The manual also provides general background information on otolith morphology, dissection, and preparation, as well as descriptions of methods used to measure precision and accuracy of age estimates. This manual is intended not only as a reference for age readers at the AFSC and other laboratories, but also to give insight into the quality of age estimates to scientists who routinely use such data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The first dedicated collections of deep-water (>80 m) sponges from the central Aleutian Islands revealed a rich fauna including 28 novel species and geographical range extensions for 53 others. Based on these collections and the published literature, we now confirm the presence of 125 species (or subspecies)of deep-water sponges in the Aleutian Islands. Clearly the deep-water sponge fauna of the Aleutian Islands is extraordinarily rich and largely understudied. Submersible observations revealed that sponges, rather than deep-water corals, are the dominant feature shaping benthic habitats in the region and that they provide important refuge habitat for many species of fish and invertebrates including juvenile rockfish (Sebastes spp.) and king crabs (Lithodes sp). Examination of video footage collected along 127 km of the seafloor further indicate that there are likely hundreds of species still uncollected from the region, and many unknown to science. Furthermore, sponges are extremely fragile and easily damaged by contact with fishing gear. High rates of fishery bycatch clearly indicate a strong interaction between existing fisheries and sponge habitat. Bycatch in fisheries and fisheries-independent surveys can be a major source of information on the location of the sponge fauna, but current monitoring programs are greatly hampered by the inability of deck personnel to identify bycatch. This guide contains detailed species descriptions for 112 sponges collected in Alaska, principally in the central Aleutian Islands. It addresses bycatch identification challenges by providing fisheries observers and scientists with the information necessary to adequately identify sponge fauna. Using that identification data, areas of high abundance can be mapped and the locations of indicator species of vulnerable marine ecosystems can be determined. The guide is also designed for use by scientists making observations of the fauna in situ with submersibles, including remotely operated vehicles and autonomous underwater vehicles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We provide morphological and molecular evidence to recognize a new species of skate from the North Pacific, Bathyraja panthera. We also resurrect the skate subgenus Arctoraja Ishiyama, confirming its monophyly and the validity of the subgenus. Arctoraja was previously recognized as a distinct subgenus of Breviraja and later synonymized with Bathyraja (family Rajidae). Although the nominal species of Arctoraja have all been considered synonyms of Bathyraja parmifera by various authors, on the basis of morphometric, meristic, chondrological, and molecular data we recognize four species, including the new species. Species of Arctoraja are distributed across the North Pacific Ocean and adjacent seas from southern Japan to British Columbia. Bathyraja parmifera is abundant in the eastern Bering Sea, Aleutian Islands, and northern Gulf of Alaska; B. smirnovi is a western Pacific species found in the Sea of Okhotsk and Sea of Japan; B. simoterus is restricted to waters around the northern and eastern coasts of Hokkaido, Japan; and the new species B. panthera is restricted to the western Aleutian Islands. Bathyraja panthera is diagnosed by its color pattern of light yellow blotches with black spotting on a greenish brown background, high thorn and vertebral counts, chondrological characters of the neurocranium and clasper, and a unique nucleotide sequence within the mitochondrial cytochrome oxidase gene. Furthermore, the species presently recognized as Bathyraja parmifera exhibits two haplotypes among specimens from Alaska, suggesting the possibility of a second, cryptic species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prior to Pietsch’s (1993) revision of the genus Triglops, identification of their larvae was difficult; six species co-occur in the eastern North Pacific Ocean and Bering Sea and three co-occur in the western North Atlantic Ocean. We examined larvae from collections of the Alaska Fisheries Science Center and Atlantic Reference Centre and used updated meristic data, pigment patterns, and morphological characters to identify larvae of Triglops forficatus, T. macellus, T. murrayi, T. nybelini, T. pingeli, and T. scepticus; larvae of T. metopias, T. dorothy, T. jordani, and T. xenostethus have yet to be identified and are thus not included in this paper. Larval Triglops are characterized by a high myomere count (42–54), heavy dorsolateral pigmentation on the gut, and a pointed snout. Among species co-occurring in the eastern North Pacific Ocean, T. forficatus, T. macellus, and T. pingeli larvae are distinguished from each other by meristic counts and presence or absence of a series of postanal ventral melanophores. Triglops scepticus is differentiated from other eastern North Pacific Ocean larvae by having 0–3 postanal ventral melanophores, a large eye, and a large body depth. Among species co-occurring in the western North Atlantic Ocean, T. murrayi and T. pingeli larvae are distinguished from each other by meristic counts (vertebrae, dorsal-fin rays, and anal-fin rays once formed), number of postanal ventral melanophores, and first appearance and size of head spines. Triglops nybelini is distinguished from T. murrayi and T. pingeli by a large eye, pigment on the lateral line and dorsal midline in flexion larvae, and a greater number of dorsal-fin rays and pectoral-fin rays once formed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Remotely operated vehicle (ROV) surveys were conducted from NOAA’s state-of-the-art Fisheries Survey Vessel (FSV) Bell M. Shimada during a six-day transit November 1-5, 2010 between San Diego, CA and Seattle, WA. The objective of this survey was to locate and characterize deep-sea coral and sponge ecosystems at several recommended sites in support of NOAA’s Coral Reef Conservation Program. Deep-sea corals and sponges were photographed and collected whenever possible using the Southwest Fisheries Science Center’s (SWFSC) Phantom ROV ‘Sebastes’ (Fig. 1). The surveyed sites were recommended by National Marine Sanctuary (NMS) scientists at Monterey Bay NMS, Gulf of the Farallones NMS, and Olympic Coast NMS (Fig. 2). The specific sites were: Sur Canyon, The Football, Coquille Bank, and Olympic Coast NMS. During each dive, the ROV collected digital still images, video, navigation, and along-track conductivity-temperature-depth (CTD), and optode data. Video and high-resolution photographs were used to quantify abundance of corals, sponges, and associated fishes and invertebrates to the lowest practicable taxonomic level, and also to classify the seabed by substrate type. A reference laser system was used to quantify area searched and estimate the density of benthic fauna.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The impacts of widening and deepening the existing navigation channel in Grays Harbor on Dungeness crab, crangon shrimp and fish was investigated. The spatial and temporal distribution of these organisms was studied using an otter trawl and ring nets, and the uptake of organisms by dredges was estimated from samples collected on working hopper and pipeline dredges. ... Impacts of the dredging project on crabs, shrimp and fish could be associated with entrainment, food loss and toxicants released from sediments. Scenarios are presented that predict impacts. Suggestions for reducing impacts are given.