49 resultados para Seasonal Distribution
Resumo:
From the distribution of oceanographic data (temperature and salinity) in both Arabian Gulf and Gulf of Oman, the steric components (thermal, haline and steric heights) are calculated for the upper 50m layer during different seasons. The analysis reveals relevant evidence, that temperature variations (thermal component) play a role in the fluctuations of sea level within the investigated area. The salinity variations (haline component) is only significant near the entrance. The sea level variations due to density (steric component) is low during winter and spring and high during summer and autumn. The steric height is always lower in the northern and central regions of Arabian Gulf and higher in eastern region of Arabian Gulf and in the Gulf of Oman, i.e. the surface water must flow from the Gulf of Oman to the Arabian Gulf. The steric sea level gradient around the Strait of Hormuz are 0.04 cm/km in winter, 0.04 cm/km in spring, and 0.025 cm/km in summer and 0.014 cm/km in autumn.
Resumo:
The population density, distribution, diversity and secondry production of macrobenthic fauna of the inner Chahbahar Bay were studied through bi-monthly sampling from April 1995 to March 1996. Samples were collected from water near the bottom and sediment at 14 stations inside the Bay and one reference station located outside at the entrance to the Bay. The environmental parameters Such as temperature, water depth, salinity, pH and dissolved oxygen as well as percentage silt-clay and total organic matter of the sediment were measured. The faunal population density and their distribution is discussed in relation to the environmental changes. results obtained indicated both spatial and temporal heterogeneity in faunal distribution of the Chahbahar Bay. The total of 18 groups of macrofauna were identified in all samples. Amphipods formed the dominant group (21%) followed by polychaetes (19%), gastropods (15.7%) bivalves (10.6%) and all other groups (33.7%). Seasonal changes in faunal density is shown in relation to Indian Ocean southwest monsoon,the result of which indicated lower population density during monsoon (June to September) than that of the premonsoon (February to May) and post monsoon (October to January) periods. The numerical abundance of macrobenthos varied from 10260.m2 before monsoon to 5190 m2 during monsoon season. Three dominant groups of macrofauna including polychaetes, gastropods, and bivalves were identified in all collected samples. Indices of diversity, richness and evenness were calculated for these three dominant groups. The Shannon-Weaver information index was used to describe the spatially and temporally variation in diversity of these three major faunal groups. The results exhibited lower faunal diversity during monsoon period. The annual production of two dominant macrofauna species including a species of bivalve, Nuculana acuta and a species of Cephalochordata, Branchiostoma lanceolatum were measured by using age group determination. Furthermore the mean biomass and total annual production of macrobenthic fauna were estimated for the whole studied area. The potential yield of demersal fishery resources (fish and crustacean) then estimated and worked out to be 15360 tons/year asuming 10% ecological efficiency of hypothetical pyramid from 3rd to 4th marine trophic level. Accordingly the annual exploitable demersal fishery resources for the entire Chahbahar Bay was estimated to be 7600 to 8500 tons/year by taking 50 to 55% of the total estimated potential in to account.
Resumo:
Relationships between nutrient concentrations and water hyacinth biomass and composition have been studied in the shallow inshore bays of lakes Victoria, Kyoga and Albert. Additional information was obtained from Victoria Nile, Albert Nile and Kagera River. In this section, seasonal changes in nutrients and oxygen concentrations are used to explain changes in water hyacinth composition, biomass and distribution in Lake Victoria. Lake Victoria is of particular interest because it experienced strong hyacinth infestations in 1995, a sink in 1998 and resurgence in 2001. The lake has also been extensively sampled and provides time series data in nutrient, oxygen, mixing and thermal stratification which provide an opportunity to relate water hyacinth distribution and biomass to environmental factors. The possible origins and impacts of nutrient loads into Lake Victoria are also discussed in relation to water hyacinth proliferation and distribution especially in relation to known 'hot-spots'.
Resumo:
Caspian Sea with its unique characteristics is a significant source to supply required heat and moisture for passing weather systems over the north of Iran. Investigation of heat and moisture fluxes in the region and their effects on these systems that could lead to floods and major financial and human losses is essential in weather forecasting. Nowadays by improvement of numerical weather and climate prediction models and the increasing need to more accurate forecasting of heavy rainfall, the evaluation and verification of these models has been become much more important. In this study we have used the WRF model as a research-practical one with many valuable characteristics and flexibilities. In this research, the effects of heat and moisture fluxes of Caspian Sea on the synoptic and dynamical structure of 20 selective systems associated with heavy rainfall in the southern shores of Caspian Sea are investigated. These systems are selected based on the rainfall data gathered by three local stations named: Rasht, Babolsar and Gorgan in different seasons during a five-year period (2005-2010) with maximum amount of rainfall through the 24 hours of a day. In addition to synoptic analyses of these systems, the WRF model with and without surface flues was run using the two nested grids with the horizontal resolutions of 12 and 36 km. The results show that there are good consistencies between the predicted distribution of rainfall field, time of beginning and end of rainfall by the model and the observations. But the model underestimates the amounts of rainfall and the maximum difference with the observation is about 69%. Also, no significant changes in the results are seen when the domain and the resolution of computations are changed. The other noticeable point is that the systems are severely weakened by removing heat and moisture fluxes and thereby the amounts of large scale rainfall are decreased up to 77% and the convective rainfalls tend to zero.