71 resultados para San Rafael
Resumo:
Principal coordinates analysis and multiple regression analysis were used to determine the environmental factors associated with the decline in phytoplankton production during and after the 1977 drought for the San Francisco Bay-Delta Estuary. Physical, chemical and biological data were collected semimonthly or monthly during the spring-summer between 1973 and 1982 from 15 sampling sites located throughout the Bay-Delta. A decline in phytoplankton community diversity and density during the 1977 drought and subsequent years (1978 through 1981) was described using principal coordinates analysis. The best multiple regression which described the changes in phytoplankton community succession contained the variables water temperature, wind velocity and ortho-phosphate concentration. Together these variables accounted for 61 percent of the variation in the phytoplankton community among years described by principal coordinates analysis. An increase in water temperature, wind velocity and ortho-phosphate concentration within the Bay-Delta, beginning in June 1976 and continuing through 1981, was demonstrated using weighted moving averages. From the strong association between phytoplankton community succession and climatic variables it was hypothesized that the decline in phytoplankton production during and after the 1977 drought was associated with climatic changes within the northeast Pacific.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): The recent changes in phytoplankton production and community composition within the Suisun Bay and Sacramento-San Joaquin Delta may be related to climate. Chlorophyll a concentration, decreased by 42% (spring-summer) and 29% (fall) between 1972 through 1976 and 1977 through 1981. The decrease in biomass was characterized by a shift in phytoplankton community dominance from Skeletonema spp., Cyclotella spp. and Coscinodiscus spp. to Melosira granulata. The possible influence of climate on phytoplankton abundance was suggested by multivariate statistical analyses that demonstrated an association between changes in phytoplankton community composition and abundance between 1975 and 1982 and the climate related variables wind velocity, precipitation, river flow and water temperature.
Resumo:
The harbor seal (Phoca vitulina) is a large-bodied and abundant predator in the Salish Sea ecosystem, and its population has recovered since the 1970s after passage of the Marine Mammal Protection Act and the cessation of bounties. Little is known about how this large predator population may affect the recovery of fish stocks in the Salish Sea, where candidate marine protected areas are being proposed. We used a bioenergetics model to calculate baseline consumption rates in the San Juan Islands, Washington. Salmonids (Oncorhynchus spp.) and herring (Clupeidae) were the 2 most energetically important prey groups for biomass consumed by harbor seals. Estimated consumption of salmonids was 783 (±380 standard deviation [SD]) metric tons (t) in the breeding season and 675 (±388 SD t in the nonbreeding season. Estimated consumption of herring was 646 (±303 SD) t in the breeding season and 2151 (±706 SD) t in the nonbreeding season. Rockfish, a depressed fish stock currently in need of population recovery, composed one of the minor prey groups consumed by harbor seals (84 [±26 SD] t in the nonbreeding season). The variables of seal body mass and proportion of prey in seal diet explained >80% of the total variation in model outputs. Prey groups, such as rockfish, that are targeted for recovery may still be affected by even low levels of predation. This study highlights the importance of salmonids and herring for the seal population and provides a framework for refining consumption estimates and their confidence intervals with future data.