79 resultados para Remote laboratory
Resumo:
The mucus surface layer of corals plays a number of integral roles in their overall health and fitness. This mucopolysaccharide coating serves as vehicle to capture food, a protective barrier against physical invasions and trauma, and serves as a medium to host a community of microorganisms distinct from the surrounding seawater. In healthy corals the associated microbial communities are known to provide antibiotics that contribute to the coral’s innate immunity and function metabolic activities such as biogeochemical cycling. Culture-dependent (Ducklow and Mitchell, 1979; Ritchie, 2006) and culture-independent methods (Rohwer, et al., 2001; Rohwer et al., 2002; Sekar et al., 2006; Hansson et al., 2009; Kellogg et al., 2009) have shown that coral mucus-associated microbial communities can change with changes in the environment and health condition of the coral. These changes may suggest that changes in the microbial associates not only reflect health status but also may assist corals in acclimating to changing environmental conditions. With the increasing availability of molecular biology tools, culture-independent methods are being used more frequently for evaluating the health of the animal host. Although culture-independent methods are able to provide more in-depth insights into the constituents of the coral surface mucus layer’s microbial community, their reliability and reproducibility rely on the initial sample collection maintaining sample integrity. In general, a sample of mucus is collected from a coral colony, either by sterile syringe or swab method (Woodley, et al., 2008), and immediately placed in a cryovial. In the case of a syringe sample, the mucus is decanted into the cryovial and the sealed tube is immediately flash-frozen in a liquid nitrogen vapor shipper (a.k.a., dry shipper). Swabs with mucus are placed in a cryovial, and the end of the swab is broken off before sealing and placing the vial in the dry shipper. The samples are then sent to a laboratory for analysis. After the initial collection and preservation of the sample, the duration of the sample voyage to a recipient laboratory is often another critical part of the sampling process, as unanticipated delays may exceed the length of time a dry shipper can remain cold, or mishandling of the shipper can cause it to exhaust prematurely. In remote areas, service by international shipping companies may be non-existent, which requires the use of an alternative preservation medium. Other methods for preserving environmental samples for microbial DNA analysis include drying on various matrices (DNA cards, swabs), or placing samples in liquid preservatives (e.g., chloroform/phenol/isoamyl alcohol, TRIzol reagent, ethanol). These methodologies eliminate the need for cold storage, however, they add expense and permitting requirements for hazardous liquid components, and the retrieval of intact microbial DNA often can be inconsistent (Dawson, et al., 1998; Rissanen et al., 2010). A method to preserve coral mucus samples without cold storage or use of hazardous solvents, while maintaining microbial DNA integrity, would be an invaluable tool for coral biologists, especially those in remote areas. Saline-saturated dimethylsulfoxide-ethylenediaminetetraacetic acid (20% DMSO-0.25M EDTA, pH 8.0), or SSDE, is a solution that has been reported to be a means of storing tissue of marine invertebrates at ambient temperatures without significant loss of nucleic acid integrity (Dawson et al., 1998, Concepcion et al., 2007). While this methodology would be a facile and inexpensive way to transport coral tissue samples, it is unclear whether the coral microbiota DNA would be adversely affected by this storage medium either by degradation of the DNA, or a bias in the DNA recovered during the extraction process created by variations in extraction efficiencies among the various community members. Tests to determine the efficacy of SSDE as an ambient temperature storage medium for coral mucus samples are presented here.
Resumo:
Marine protected areas (MPAs) represent a form of spatial management, and geospatial information on living marine resources and associated habitat is extremely important to support best management practices in a spatially discrete MPA. Benthic habitat maps provide georeferenced information on the geomorphic structure and biological cover types in the marine environment. This information supports an enhanced understanding of ecosystem function and species habitat utilization patterns. Benthic habitat maps are most useful for marine management and spatial planning purposes when they are created at a scale that is relevant to management actions. We sought to improve the resolution of existing benthic habitat maps created during a regional mapping effort in Hawai`i. Our results complemented these existing regional maps and provided more detailed, finer-scale habitat maps for a network of MPAs in West Hawai`i. The map products created during this study allow local planners and managers to extract information at a spatial scale relevant to the discrete management units, and appropriate for local marine management efforts on the Kona Coast. The resultant benthic habitat maps were integrated in a geographic information system (GIS) that also included aerial imagery, underwater video, MPA regulations, summarized ecological data and other relevant and spatially explicit information. The integration of the benthic habitat maps with additional “value added” geospatial information into a dynamic GIS provide a decision support tool with pertinent marine resource information available in one central location and support the application of a spatial approach to the management of marine resources. Further, this work can serve as a case study to demonstrate the integration of remote sensing products and GIS tools at a fine spatial scale relevant to local-level marine spatial planning and management efforts.