76 resultados para Predator cues
Resumo:
Dosidicus gigas, the only species in the genus Dosidicus, is commonly known as the jumbo squid, jumbo flying squid (FAO, see Roper et al., 1984), or Humboldt squid. It is the largest ommastrephid squid and is endemic to the Eastern Pacific, ranging from northern California to southern Chile and to 140oW at the equator (Nesis, 1983; Nigmatullin, et al., 2001). During the last two decades it has become an extremely important fisheries resource in the Gulf of California (Ehrhardt et al., 1983; Morales-Bojórquez et al., 2001), around the Costa Rica Dome (Ichii et al., 2002) and off Peru (Taipe et al., 2001). It is also an active predator that undoubtedly has an important impact on local ecology in areas where it is abundant (Ehrhardt et al., 1983; Nesis, 1983; Nigmatullin et al., 2001; Markaida and Sosa-Nishizaki, 2003).
Resumo:
Pacific hake, Merluccius productus, the most abundant groundfish in the California Current Large Marine Ecosystem (CCLME), is a species of both commercial significance, supporting a large international fishery, and ecological importance, connecting other species as both predator and prey. Coastal Pacific hake migrations are characterized by movements between northern summer feeding areas and southern winter spawning areas, with variations in annual abundance, distribution, and the extent of these movements associated with varying climate-ocean conditions. In general, warm (cool) years with enhanced (reduced) stratification and poleward (equatorward) transport are often related to good (poor) recruitment, increased (decreased) northward distribution, and reduced (enhanced) growth. However, the classic periodic pattern of annual migration and distribution may no longer be fully representative. Based on recent advances in the understanding of climate-ocean variability off the U.S. west coast, we hypothesize that the annual movements of Pacific hake are more responsive to climate-ocean variability than previously thought, and further, that changes observed in Pacific hake distributions may reflect long-term changes in climate-ocean conditions in the CCLME. Therefore, an updated model of these relations is key to effective monitoring and management of this stock, as well as to devising scenarios of future change in the CCLME as a result of climate variations. The current state of knowledge of the relationship between the Pacific hake and its environment is reviewed, highlighting emerging ideas compared to those of the past, and priorities for future research are suggested.
Resumo:
A review of available information describing habitat associations for belugas, Delphinapterus leucas, in Cook Inlet was undertaken to complement population assessment surveys from 1993-2000. Available data for physical, biological, and anthropogenic factors in Cook Inlet are summarized followed by a provisional description of seasonal habitat associations. To summarize habitat preferences, the beluga summer distribution pattern was used to partition Cook Inlet into three regions. In general, belugas congregate in shallow, relatively warm, low-salinity water near major river outflows in upper Cook Inlet during summer (defined as their primary habitat), where prey availability is comparatively high and predator occurrence relatively low. In winter, belugas are seen in the central inlet, but sightings are fewer in number, and whales more dispersed compared to summer. Belugas are associated with a range of ice conditions in winter, from ice-free to 60% ice-covered water. Natural catastrophic events, such as fires, earthquakes, and volcanic eruptions, have had no reported effect on beluga habitat, although such events likely affect water quality and, potentially, prey availability. Similarly, although sewage effluent and discharges from industrial and military activities along Cook Inlet negatively affect water quality, analyses of organochlorines and heavy metal burdens indicate that Cook Inlet belugas are not assimilating contaminant loads greater than any other Alaska beluga stocks. Offshore oil and gas activities and vessel traffic are high in the central inlet compared with other Alaska waters, although belugas in Cook Inlet seem habituated to these anthropogenic factors. Anthropogenic factors that have the highest potential negative impacts on belugas include subsistence hunts (not discussed in this report), noise from transportation and offshore oil and gas extraction (ship transits and aircraft overflights), and water quality degradation (from urban runoff and sewage treatment facilities). Although significant impacts from anthropogenic factors other than hunting are not yet apparent, assessment of potential impacts from human activities, especially those that may effect prey availability, are needed.
Resumo:
The abundance of the common starfish, Asterias forbesi, fluctuates widely over time. The starfish is a predator of pre-recruit northern quahogs, Mercenaria mercenaria. During the 1990’s, starfish became scarce in Raritan Bay and Long Island Sound. Quahog populations concurrently erupted in abundance and quahog landings have risen sharply in both locations. The extensive scale of this observation would seem to imply a cause and effect; at the least, both populations may be responding differently to a large scale exogenous factor.
Resumo:
This is the report from the South and West Cumberland Fisheries Advisory Committee meeting, which was held on the 16th October, 1978. It covers information on fisheries income and expenditure, the study of salmon propagation in England and Wales, work on the future programme of fisheries work, keep nets, and the drought order for the reduction of compensation water from Lake Ennerdale. It also covers the report by the area fisheries officer on fishing activities including river conditions and fishing, migratory fish movements, and an update on Holmwrangle hatchery. The report also looks at stocking numbers of salmon and sea trout in various rivers, predator counts for various rivers, fish mortalities and fish disease. The Fisheries Advisory Committee was part of the Regional Water Authorities, in this case the North West Water Authority. This preceded the Environment Agency which came into existence in 1996.
Resumo:
This is the report from the Eden and District Fisheries Advisory Committee meeting, which was held on the 17th October, 1978. It covers information on fisheries income and expenditure, the study of salmon propagation in England and Wales, work on the future programme of fisheries work and keep nets. It also covers the report by the area fisheries officer on fishing activities including river conditions and fishing for salmon, sea trout, brown trout, and coarse fish, and an update on Holmwrangle hatchery. The report also looks at stocking numbers of salmon and sea trout in various rivers, predator counts for various rivers, biological work and fish disease. The Fisheries Advisory Committee was part of the Regional Water Authorities, in this case the North West Water Authority. This preceded the Environment Agency which came into existence in 1996.
Resumo:
This is the report from the Lune, Wyre and Furness Fisheries Advisory Committee meeting, which was held on the 24th October, 1978. It covers information on fisheries income and expenditure, the study of salmon propagation in England and Wales, work on the future programme of fisheries work and keep nets. Also covered is a brief note on the future water supplies for South West Cumbria, water resource development, cage rearing of salmon smolts in the River Leven and the report by the area fisheries officer on usage of Middleton hatchery. The section on the report by the area fisheries officer on fishing activities includes river conditions for salmon, sea trout, non-migratory trout, Char and coarse fish, and migratory fish movements at Haverthwaite on the River Leven, Broadraine and Forge Weir on the River Lune and Duddon Hall. Stocking numbers of brown trout and rainbow trout in various rivers are also added, as well as predator numbers for various rivers, pollution incidents and fish mortalities, biological work and Skerton Weir. The Fisheries Advisory Committee was part of the Regional Water Authorities, in this case the North West Water Authority. This preceded the Environment Agency which came into existence in 1996.
Resumo:
Harbor seals (Phoca fvitulina) are an abundant predator along the west coast of North America, and there is considerable interest in their diet composition, especially in regard to predation on valued fish stocks. Available informationon harbor seal diets, primarily derived from scat analysis, suggests that adult salmon (Oncorhynchus spp.), Pacific Herring (Clupea pallasii), and gadids predominate. Because diet assessments based on scat analysis may be biased, we investigated diet composition through quantitative analysis of fatty acid signatures. Blubber samples from 49 harbor seals captured in western North America from haul-outs within the area of the San Juan Islands and southern Strait of Georgia in the Salish Sea were analyzed for fatty acid composition, along with 269 fish and squid specimens representing 27 potential prey classes. Diet estimates varied spatially, demographically, and among individual harbor seals. Findings confirmed the prevalence of previously identified prey species in harbor seal diets, but other species also contributed significantly. In particular, Black (Sebastes melanops) and Yellowtail (S. flavidus) Rockfish were estimated to compose up to 50% of some individual seal diets. Specialization and high predation rates on Black and Yellowtail Rockfish by a subset of harbor seals may play a role in the population dynamics of these regional rockfish stocks that is greater than previously realized.
Resumo:
The harbor seal (Phoca vitulina) is a large-bodied and abundant predator in the Salish Sea ecosystem, and its population has recovered since the 1970s after passage of the Marine Mammal Protection Act and the cessation of bounties. Little is known about how this large predator population may affect the recovery of fish stocks in the Salish Sea, where candidate marine protected areas are being proposed. We used a bioenergetics model to calculate baseline consumption rates in the San Juan Islands, Washington. Salmonids (Oncorhynchus spp.) and herring (Clupeidae) were the 2 most energetically important prey groups for biomass consumed by harbor seals. Estimated consumption of salmonids was 783 (±380 standard deviation [SD]) metric tons (t) in the breeding season and 675 (±388 SD t in the nonbreeding season. Estimated consumption of herring was 646 (±303 SD) t in the breeding season and 2151 (±706 SD) t in the nonbreeding season. Rockfish, a depressed fish stock currently in need of population recovery, composed one of the minor prey groups consumed by harbor seals (84 [±26 SD] t in the nonbreeding season). The variables of seal body mass and proportion of prey in seal diet explained >80% of the total variation in model outputs. Prey groups, such as rockfish, that are targeted for recovery may still be affected by even low levels of predation. This study highlights the importance of salmonids and herring for the seal population and provides a framework for refining consumption estimates and their confidence intervals with future data.
Resumo:
A review of the significant contributions in the peer-reviewed literature indicates that the discarding of marine fish known as bycatch remains one of the most significant problem facing fisheries managers. Bycatch has negative affects on marine biodiversity, is ripe with ethical and moral issues surrounding the waste of life from increased juvenile fish mortality, hinders commercial profitability and recreational satisfaction, increases management costs, and results in socio-cultural problems and conflicts. While appearing to have a simple conservation engineering solution, reducing or eliminating bycatch in marine fishing operations given the presently existing regulated open access management environment is demonstrated to actually be so complex that its effects can appear to be counter-intuitive. An ecosystem simulation model that explicitly incorporates the human and biological dimensions is used to evaluate proposed bycatch reduction regulations for two fishing fleets exploiting three out of seven species of fish, each with ten cohorts, in two resource areas. One of the fishing fleets is divided into two components representing commercial fishermen and recreational anglers. The seven fish species represent predator, prey, and competitor behaviors and one stock is treated as an endangered species. The results displayed in a series of figures demonstrate the potential unintended effects of simplistic management approaches and the need for a holistic and comprehensive approach to bycatch management. That is, an ecosystem model that explicitly incorporates socio-cultural and biophysical attributes into a common framework allows the magnitude and direction of behavioral responses to be predicted based on changes in governance or biophysical constraints to determine if management goals and objectives have been obtained through the use of quantitative metrics.
Resumo:
Marine mammals, such as dolphins, can serve as key indicator species in coastal areas by reflecting the effects of natural and anthropogenic stressors. As such they are often considered sentinels of environmental and ecosystem health (Bossart 2006; Wells et al. 2004; Fair and Becker 2000). The bottlenose dolphin is an apex predator and a key component of many estuarine environments in the southeastern United States (Woodward-Clyde Consultants 1994; SCDNR 2005). Health assessments of dolphins are especially critical in areas where populations are depleted, show signs of epidemic disease and/or high mortality and/or where habitat is being altered or impacted by human activities. Recent assessments of environmental conditions in the Indian River Lagoon, Florida (IRL) and the estuarine waters surrounding Charleston, South Carolina (CHS) highlight the need for studies of the health of local bottlenose dolphins. While the condition of southeastern estuaries was rated as fair in the National Coastal Condition Report (U.S. EPA 2001), it was noted that the IRL was characterized by poorer than expected benthic communities, significant sediment toxicity and increased nutrient concentrations. Similarly, portions of the CHS estuary have sediment concentrations of aliphatic aromatic hydrocarbons, select inorganic metals, and some persistent pesticides far in excess of reported bioeffect levels (Hyland et al. 1998). Long-term trends in water quality monitoring and recent scientific research suggest that waste load assimilation, non-point source runoff impacts, contaminated sediments, and toxic pollutants are key issues in the CHS estuary system. Several ‘hot spots’ with high levels of heavy metals and organic compounds have been identified (Van Dolah et al. 2004). High concentrations of anthropogenic trace metals, polychlorinated biphenyls (PCB’s) and pesticides have been found in the sediments of Charleston Harbor, as well as the Ashley and Cooper Rivers (Long et al. 1998). Two superfund sites are located within the CHS estuary and the key contaminants of concern associated with these sites are: polycyclic aromatic hydrocarbons (PAH), lead, chromium, copper, arsenic, zinc and dioxin. Concerns related to the overall health of IRL dolphins and dermatologic disease observed in many dolphins in the area (Bossart et al. 2003) initiated an investigation of potential factors which may have impacted dolphin health. From May-August 2001, 35 bottlenose dolphins died in the IRL during an unusual mortality event (MMC 2003). Many of these dolphins were diagnosed with a variety of skin lesions including proliferative ulcerative dermatitis due to protozoa and fungi, dolphin pox and a vesicular dermatopathy of unknown etiology (Bossart et al. 2003). Multiple species from fish to dolphins in the IRL system have exhibited skin lesions of various known and unknown etiologies (Kane et al. 2000; Bossart et al. 2003; Reif et al. 2006). On-going photo-identification (photo-ID) studies have documented skin diseases in IRL dolphins (Mazzoil et al. 2005). In addition, up to 70% of green sea turtles in the IRL exhibit fibropapillomas, with the highest rates of occurrence being seen in turtles from the southern IRL (Hirama 2001).
Resumo:
Grass shrimp, Palaemonetes pugio, are a common inhabitant of US East and Gulf coast salt marshes and are a food source for recreationally and economically important fish and crustacean species. Due to the relationship of grass shrimp with their ecosystem, any significant changes in grass shrimp population may have the potential to affect the estuarine system. Land use is a crucial concern in coastal areas where increasing development impacts the surrounding estuaries and salt marshes and has made grass shrimp population studies a logical choice to investigate urbanization effects. Any impact on tidal creeks will be an impact on grass shrimp populations and their associated micro-environment whether predator, prey or parasitic symbiont. Anthropogenic stressors introduced into the grass shrimp ecosystem may even change the intensity of infections from parasitic symbionts. An ectoparasite found on P. pugio is the bopyrid isopod Probopyrus pandalicola. Little is known about factors that may affect the occurrence of this isopod in grass shrimp populations. The goal was to analyze the prevalence of P. pandalicola in grass shrimp in relation to land use classifications, water quality parameters, and grass shrimp population metrics. Eight tidal creeks in coastal South Carolina were sampled monthly over a three year period. The occurrence of P. pandalicola ranged from 1.2% to 5.7%. Analysis indicated that greater percent water and marsh coverage resulted in a higher incidence of bopyrid occurrence. Analysis also indicated that higher bopyrid incidence occurred in creeks with higher salinity, temperature, and pH but lower dissolved oxygen. The land use characteristics found to limit bopyrid incidence were limiting to grass shrimp (definitive host) populations and probably copepod (intermediate host) populations as well.
Resumo:
We have recently exchanged and integrated into a single database tag detections for conch, teleost and elasmobranch fish from four separately maintained arrays in the U.S. Virgin Islands including the NMFS queen conch array (St. John nearshore), NOAA’s Biogeography Branch array (St. John nearshore & midshelf reef); UVI shelf edge arrays (Marine Conservation District, Grammanik & other shelf edge); NOAA NMFS Apex Predator array COASTSPAN (St. John nearshore). The integrated database has over 7.5 million hits. Data is shared only with consent of partners and full acknowledgements. Thus, the summary of integrated data here uses data from NOAA and UVI arrays under a cooperative agreement. The benefits of combining and sharing data have included increasing the total area of detection resulting in an understanding of broader scale connectivity than would have been possible with a single array. Partnering has also been cost-effectiveness through sharing of field work, staff time and equipment and exchanges of knowledge and experience across the network. Use of multiple arrays has also helped in optimizing the design of arrays when additional receivers are deployed. The combined arrays have made the USVI network one of the most extensive acoustic arrays in the world with a total of 150+ receivers available, although not necessarily all deployed at all times. Currently, two UVI graduate student projects are using acoustic array data.
Resumo:
Benthic food webs often derive a significant fraction of their nutrient inputs from phytoplankton in the overlying waters. If the phytoplankton include harmful algal species like Pseudo-nitzschia australis, a diatom capable of producing the neurotoxin domoic acid (DA), the benthic food web can become a depository for phycotoxins. We tested the general hypothesis that DA contaminates benthic organisms during local blooms of P. australis, a widespread toxin producer along the US west coast. To test for trophic transfer and uptake of DA into the benthic food web, we sampled 8 benthic species comprising 4 feeding groups: filter feeders (Emerita analoga and Urechis caupo); a predator (Citharichthys sordidus); scavengers (Nassarius fossatus and Pagurus samuelis) and deposit feeders (Neotrypaea californiensis, Dendraster excentricus and Olivella biplicata). Sampling occurred before, during and after blooms of P. australis in Monterey Bay, CA, USA during 2000 and 2001. DA was detected in all 8 species, with contamination persisting over variable time scales. Maximum DA levels in N. fossatus (674 ppm), E. analoga (278 ppm), C. sordidus (515 ppm), N. californiensis (145 ppm), P. samuelis (56 ppm), D. excentricus (15 ppm) and O. biplicata (3 ppm) coincided with P. australis blooms, while DA levels in U. caupo remained above 200 ppm (max. = 751 ppm) throughout the study period. DA in 6 species exceeded levels thought to be safe for higher level consumers (i.e. ≥20 ppm) and thus is likely to have deleterious effects on marine birds, sea lions and the endangered California sea otter, known to prey upon these benthic species.
Resumo:
Increasing interest in the use of stock enhancement as a management tool necessitates a better understanding of the relative costs and benefits of alternative release strategies. We present a relatively simple model coupling ecology and economic costs to make inferences about optimal release scenarios for summer flounder (Paralichthys dentatus), a subject of stock enhancement interest in North Carolina. The model, parameterized from mark-recapture experiments, predicts optimal release scenarios from both survival and economic standpoints for varyious dates-of-release, sizes-at-release, and numbers of fish released. Although most stock enhancement efforts involve the release of relatively small fish, the model suggests that optimal results (maximum survival and minimum costs) will be obtained when relatively large fish (75–80 mm total length) are released early in the nursery season (April). We investigated the sensitivity of model predictions to violations of the assumption of density-independent mortality by including density-mortality relationships based on weak and strong type-2 and type-3 predator functional responses (resulting in depensatory mortality at elevated densities). Depending on postrelease density, density-mortality relationships included in the model considerably affect predicted postrelease survival and economic costs associated with enhancement efforts, but do not alter the release scenario (i.e. combination of release variables) that produces optimal results. Predicted (from model output) declines in flounder over time most closely match declines observed in replicate field sites when mortality in the model is density-independent or governed by a weak type-3 functional response. The model provides an example of a relatively easy-to-develop predictive tool with which to make inferences about the ecological and economic potential of stock enhancement of summer flounder and provides a template for model creation for additional species that are subjects of stock enhancement interest, but for which limited empirical data exist.