64 resultados para Physical-chemical characteristics
Resumo:
The morphometrics and the bio-chemical characteristics of Crassostrea cuculata and Perna perna were studied. In the oyster, the length was found to be positively correlated with breadth and total body weight. There was also a positive relationship between the total body weight and the total muscle weight. In the mytilid the total body weight was positively correlated with length and total muscle weight. The muscle weight was also found to be highly correlated with the length. In both animals the relationship between the length and the total body weight was curvilinear. In the oyster, the protein content was found to increase with the total body weight and the total muscle weight. In the mytilid the protein content increased not only with the total body weight but also with the length. In both animals, the relative content of protein is higher than that of carbohydrates, lipids and ash.
Resumo:
The first year-round quarterly surveys were completed for the year 2011. For the year 2012, SON management decided to change the frequency of the surveys from quarterly to biannual and the first such survey, was undertaken in June 2012. The second survey was undertaken in December 2012 and is the subject of this report: Results/observations made are presented in this technical report along with a scientific interpretation and discussion of the results with reference to possible impacts of the cage facilities to the water environment and aquatic biota. SON cage study sites were coded as downstream of cages (DSC), within cages (WIC) and upstream of cages (USC). Physical-chemical parameters (water column temperature, dissolved oxygen, pH, conductivity, were measured in-situ with a pre-calibrated hydrolab at each site. A digital Echo Sounder was used to determine the total water column depth at each site. A black and white Secchi disc was used to determine water column transparency. Coordinate locations were determined with a GPS device.
Resumo:
Source of the Nile Fish farm (SON) is located at Bugungu area in Napoleon Gulf, northern Lake Victoria. The proprietors of the farm and the National Fisheries Resources Research Institute (NaFIRRI) have an established collaborative arrangement where NaFIRRI provides technical back-stopping to enable quarterly environment monitoring of the cage site; a mandatory requirement of the National Environment Management Authority (NEMA). The agreed study areas are physical-chemical factors (water depth, water transparency/secchi depth, water temperature, dissolved oxygen, BOO, pH, conductivity), and selected nutrients), algal community (including primary production), aquatic invertebrates (zooplankton and macrobenthos) and the fish community. This report presents field observations made during the third quarter (July-September) field survey undertaken during August 2014; along with scientific interpretation and discussion of the results in reference to possible impacts of the cage facility to the water environment quality and aquatic biota.
Resumo:
Source of the Nile Fish farm (SON) is located at Bugungu area in Napoleon Gulf, northern Lake Victoria. The proprietors of the farm requested for technical assistance of NaFIRRI to undertake regular environment monitoring of the cage site as is mandatory under the NEMA conditions. NAFIRRI agreed to undertake quarterly environment surveys in the cage area covering selected physical-chemical factors Like water column depth, water transparency, water column temperature, dissolved oxygen, pH and conductivity; nutrient status, algal and invertebrate communities (microinvertebrates/zooplankton and macro-invertebrates/macro-benthos) as well as fish community. The first quarter survey was undertaken in February 2011; the second in May 2011 and the third quarter survey, which is the subject of this report, in September 2011. Results/observations made are presented in this technical report along with a scientific interpretation and discussion of the results with reference to possible impacts of the cage facilities to the water environment and aq-uatic biota, including the natural fish community at and around the cage site.
Resumo:
Source of the Nile Fish farm (SON) is located in northern Lake Victoria close to the headwaters of the River Nile. The proprietors of the farm have established a collaborative agreement with the National Fisheries Resources Research Institute (NaFIRRI) to undertake quarterly environment monitoring surveys of the fish cage site at Bugungu in the Napoleon Gulf. This activity is a mandatory requirement of the National Environment Management Authority (NEMA) of Uganda. Therefore NAFIRRI undertakes monitoring surveys once every quarter covering selected physical‐chemical parameters including water column depth, water transparency, water column temperature, dissolved oxygen, pH, conductivity and nutrient status; algal, zooplankton, macro‐benthos and fish communities. While the first quarter survey of 2013 (January‐March) was missed out due to late decision, the second quarter monitoring survey was dully undertaken in May 2013 and a technical report was compiled and submitted to the client. The present report covers the third quarter survey (July‐September) undertaken in September 2013. Results/observations made are presented in this technical report along with a scientific interpretation and discussion of the results with reference to possible impacts of the cage facilities to the water environment quality and selected aquatic biota.
Resumo:
Source of the Nile Fish farm (SON) is located at Bugungu area in Napoleon Gulf, northern Lake Victoria. The proprietors of the farm requested NaFIRRI to provide technical assistance to undertake regular environment monitoring of the cage site as is mandatory under the NEMA conditions. NAFIRRI agreed to undertake regular environment surveys in the cage area covering selected physical‐chemical factors i.e. water column depth, water transparency, water column temperature, dissolved oxygen, pH, conductivity, redox potential and turbidity; nutrient status, algal and invertebrate communities (micro‐invertebrates/zooplankton and macro‐invertebrates/macro‐benthos) as well as fish community. The first year‐round quarterly surveys were completed for the year 2011. It was decided by SON management to change the frequency of the monitoring surveys to biannual starting in the year 2012 and the first such survey, which is the subject of this report, was undertaken in June 2012. Results/observations made are presented in this technical report along with a scientific interpretation and discussion of the results with reference to possible impacts of the cage facilities to the water environment and aquatic biota. SON
Resumo:
Source of the Nile Fish farm (SON) is located at Bugungu area in Napoleon Gulf, northern Lake Victoria. The proprietors of the farm and the National Fisheries Resources Research Institute (NaFIRRI) have an established collaborative arrangement where NaFIRRI provides technical back‐stopping to enable quarterly environment monitoring of the cage site as a mandatory requirement of the National Environment Management Authority (NEMA). The agreed study areas are selected physical‐chemical factors (water depth, water transparency/secchi depth, water temperature, dissolved oxygen, pH, conductivity, and nutrient status), algal community (including primary production), aquatic invertebrates (zooplankton and macro‐benthos) and the fish community. This report presents field observations made during the first quarter (January‐March) field survey undertaken during March 2014; along with scientific interpretation and discussion of the results in reference to possible impacts of the cage facility to the water environment quality and aquatic biota. The
Resumo:
Investigation on the seasonal distribution and abundance of various major taxa of phyto and zooplankton and the corresponding physico-chemical characteristics were carried out in four selected stations between the latitude 22°35.494N N-23°23.987 N and longitude 90°35.793 E- 90°49.061 E of the Meghna river system, Bangladesh. Drop count method was followed for the qualitative and quantitative analysis of both phyto- and zooplankton. A total of 41 phytoplankton genera belonging to 17 families and 13 zooplankton genera belonging to 11 families were recorded. Zooplankton growth cycle was noticeably less (3.0%) than the phytoplankton abundance almost throughout the study period. Quantity of plankton registered to increase chronologically from the upper to lower stretches of the river. During summer investigation the load of phytoplankton was recorded maximum (11,300-51,850 No/1). Ratio-wise quantitative difference between zoo- and phytoplankton in composition of the total standing crop fluctuated between 1.0:5.5 and 1:1037. Among the phytoplanktonic groups, Chlorophyceae was found to be dominating (95.0%) in all sampling stations. Protococcus, a single genus of Chlorophyceae played a unique role during summer, contributing the highest density of about 74.0%. The pattern of qualitative and quantitative difference of plankton standing crop in different sampling sites can be attributed to the existing physico-chemical characteristics, mainly water temperature, pH and hardness.
Resumo:
Microalgal community structure in experimental carp-pangasiid catfish polyculture ponds under four different stocking rates (treatments) each with three replications in the Field Laboratory of the Faculty Fisheries, Bangladesh Agricultural University, Mymensingh was studied. A total of 38 microalgal genera were identified under four major groups: 18 genera belong to Chlorophyceae, 9 to Cyanophyceae, 8 to Bacillariophyceae and 3 to Euglenophyceae. Chlorophyceae was abundant in all treatments followed by Cyanophyceae, Bacillariophyceae and Euglenophyceae throughout the study period. The cell densities of total microalgal population varied between 51.66x10^3 cells/L in June in T1 and 126.4x10^3 cells/L in August in T2. The appearance of Microcysris, Oscillatoria, Gomphospheria, Hildenbrandia, Chlorella, Scenedesmus, Cyclotella, Navicula, Nitzschia, Euglena and Phacus as dominant genera throughout the study period may related to sufficient nutrient availability, good light conditions and high growth rate of these genera. Water quality parameters of the experimental ponds were within suitable range for microalgal production and fish culture though the nutrient (nitrate-nitrogen and phosphate-phosphorus) concentrations were high. The factors involved in structuring a phytoplankton community arise from the relationship generated by physical, chemical and biological conditions especially the stocked planktivorous carps. Microalgal bloom formation is very common in pangasiid catfish monoculture ponds but in the present study bloom was not formed and the algal species diversity was found to be slightly increased with the study period. The introduction carps of carps in the experimental ponds might have helped in controlling the microalgal bloom formation and maintenance of the species diversity.
Resumo:
A study is made to determine the maximum permissible time lag both under iced and not iced storage conditions between the catching of mackerel (Rastrelliger kanagurta) and its curing, so that the quality of the finished product is within tolerable limits. Based on physical, chemical, bacteriological and taste panel studies the maximum time lag permissible is fixed as 8hrs under not iced condition and 3 days under iced condition. Icing of fish is also found to affect the tasting qualities of the finished product.
Resumo:
Results of investigations carried out to improve the process of 'Colombo-curing' of mackerel are presented in this paper. Optimum composition of salt and gorujka puli (malabar tamarind, Garcinia cambogea) to be used in the pickle mixture to give a product of good organoleptic and chemical characteristics have been worked out. Sodium benzoate is used as a preservative against the attack of molds, 'red' etc.
Resumo:
Copper is used to deter the growth of bacterial, fungal and protozoan disease organism in fishes. Zoeae (Z SUB-1 ), myses (M SUB-1 ) and postlarvae (P SUB-1 ) were exposed to copper sulfate at concentrations of 0 . 025, 0 . 05, 0 . 75, 0 . 1 and 0 . 2 ppm from 24 to 96 hours. The number of surviving larvae were counted at the end of each 24-hour period and the percentage of survival is determined for each dose level. The LC SUB-50 for each of the larval stages was interpolated from the data whenever possible. Three trials with 2 replicates per trial were conducted. The physico-chemical characteristics of the bath taken before and at the end of the experimental period show insignificant differences between initial and final values in each trial. Results indicate that mortality rates of all larval stages increased with exposure time and that mortality rates of the experimental group is higher than the control. Interpolation of the LC SUB-50 is possible only for the 48-h and 72-h exposure times for both zoeae and myses and for the 48-h exposure time for the postlarvae. This is due to the high survival percentage of the 24-h group and the low survival percentage (below 50%) of the larvae exposed for 96 hours. The 48-hour LC SUB-50 for Z SUB-1 , M SUB-1 and P SUB-1 are 0 . 225, 0 . 350 and 0 . 125 ppm respectively. Postlarvae seem to be more sensitive than either of the 2 larval stages having a lower 48-h LC SUB-50 and a low survival rate after 72 hours. The larvae were observed to lose their balance and were lethargic, producing few swimming movements so that they were mostly confined to the bottom of the aquaria. Moribund larvae observed under the microscope had a faster but weak heartbeat compared to healthy larvae. Slight or complete loss of feeding ability indicated by empty guts and delayed molting of Z SUB-1 to Z SUB-2 were also noted.
Resumo:
One of the most promising prophylactic agents being tested to control Penaeus monodon larval diseases is furanace (6-hydroxymethyl-2 2(5-nitro-2-furyl) vinyl pyridine). To evaluate further its suitability as a chemotherapeutic agent, its effects on the population growth of Chaetoceros calcitrans, the diatom used as feed for the zoeal stages, was examined. Chaetoceros populations of uniform density (initial density in all runs: 130-141x10 SUP-3 cells /ml) were placed in nine white, circular (382 sq cm), plastic basins. The physio-chemical characteristics of the culture water were as follows: salinity, 28 . 5-30 . 0 ppt; pH, 8 . 62-8 . 72; temperature, 23-25 . 5 degree C; dissolved oxygen, 7 . 1-9 . 3 ppm; nitrate, 0 . 03-0 . 07 ppm; and ammonia, 0 . 005-0 . 03 ppm. Preweighed furanace granules were dissolved in the culture water, with resulting concentrations of 1 and 2 mg/l (3 replicates each). A set of replicates without furanace served as the control. Population counts of the diatom were taken after 2, 4, 6, 8, and 10 hr exposures. After 4 hr, the population decreased in all three levels. The population in 2 mg/l furanace showed the lowest count and that in control the highest. The population means are not statistically different from one another. The results of the study show that the furanace causes reductions in Chaetoceros population at all durations of exposure.
Resumo:
This present work study on water quality and benthic Macro invertebrate in Gorganrood, river. The research was carried out at 6 sampling site and the abundance and diversity of benthos were monitored along the length of river between 2007_2008_14 families were recorded in phyla, namely Annelidae, Mollusca,.... The greatest number of species was at 1 st station and the least number was at 6th station. The upper section supported more diverse community then the lower section. A low macro invertebrate abundance was observed during spring as a result of heavy rainfall and flood, and generally in all lowest section because of high valve of nitrogen and other nutrients. Water physiochemical parameters such as Phosphate, Nitrate,TPS and others were measured and water quality were studied through different indices such as saprobic system, Helsinhoff (FBI), BMWP and the results were compared and evaluated by physical chemical and parameters. The result indicated that the water quality in the up stream and the middle were good to fair, but the down stream qualities were pour at all sites.
Resumo:
Phytoplankton productivity is the common and important factor being considered in determining the overall status of a given body of water. This is because they are found at the base of an energy or food chain, being the basic source of primary food in a given aquatic system. Hence, information on their contribution is essential in indicating how much biomass energy will be available to all other living resources in the system. Though the primary productivity of shallow lakes is characterized by mixed populations of phytoplankton and submersed aquatic vegetation in the open water. Lake Choghakhor, is a shallow lake, located in Chaharmahal-Bakhtiyari Province. This lake is the most important ecosystem in the region especially for waterfowl populations, has a recreational value and supports tourism and fisheries. During last decade Choghakhor has been influenced by some man-made impacts such as water level fluctuation, agricultural discharge and fish (Cyprinids) introduction causing a serious problem in its trophic states. So water quality for physical, chemical and biological was monitored in five sampling stations, from April 2003 to March 2004. As biological parameters we studied phytoplankton, epiphytic algae, and zooplankton and macrobenthose community structure. Chlorophyll a content for phytoplankton and epiphytes was measured to estimate production of these groups (biomass over time). Also we determined biomasses of submersed macrophytes and macrobenthose and primary production of phytoplankton (dark and light bottles technique) to estimate fish production. The results of this study showed Lake Choghakhor did not undergo stable thermal and oxygen stratification, and the lake water was mixed throughout the study (the lake mixing regime is polymictic). Now submerged plants especially Myriophyllum spicatum has covered almost the entire lake and dense macrophyte beds (Polygonom amphibium), located on the east southern end of the lake appear to act as a sink for these nutrients. Lake Choghakhor appeared to be in a macrophyte dominated clear water state with low TP (annual mean: 24± 15μg.l-1) and chlorophyll a (annual mean: 3±1.28μg.l-1) concentrations and very high Secchi depth. The grazing pressure of dominant pelagic filtering zooplankton Daphnia longespina did not seem to be significant in determining the low phytoplankton crop expressed as chlorophyll a. We expect that sequestering of nutrients by submerged plants and associated epiphytes are the dominant stabilizing mechanisms suppressing the phytoplankton crop of Lake Choghakhor.