49 resultados para Moeller, Gary
Resumo:
Life-history dynamics of pinfish (Lagodon rhomboides) were examined from data derived from random station surveys conducted in Tampa Bay and adjacent Gulf of Mexico waters during 1993–97. In addition, patterns in spatial distribution and abundance in Gulf of Mexico waters were investigated. Ages determined from whole otoliths ranged from 0 to 7 years, and von Bertalanffy growth models for males and females were not significantly different. Von Bertalanffy growth model parameters were L∞=219.9 mm SL, k =0.33/yr, and t0 =–1.10 years for all fish combined. High gonadosomatic indices during October–December indicated that some spawning may occur in Tampa Bay. Estimated lengths at 50% maturity were 132 mm SL for males and 131 mm SL for females. Total instantaneous mortality rates derived from the Chapman-Robson estimator ranged from 0.88 to 1.08/yr, and natural mortality was estimated to be 0.78/yr. In Gulf of Mexico waters, pinfish catch rates declined with increasing depth, and most pinfish were caught in <17 m of water. Length distributions showed that pinfish segregate by size with increasing depth.
Resumo:
We describe a preliminary investigation into large-scale atmospheric and surface moisture variations over North America. We compare large-scale hydrologic budgets in the Los Alamos general circulation model (GCM) to observed precipitation and vertically integrated atmospheric moisture fluxes derived from the National Meteorological Center's operational analyses. THe GCM faithfully simulates the integrated flux divergence and P-E differences. However, the integrated moisture content is too low, and precipitation and evaporation are too high. The model produces summertime soil moisture dryness, which supports previous studies showing increased droughts under warmer conditions.
Resumo:
As the global population has increased, so have human influences on the global environment. ... How can we better understand and predict these natural and potential anthropogenic variations? One way is to develop a model that can accurately describe all the components of the hydrologic cycle, rather than just the end result variables such as precipitation and soil moisture. If we can predict and simulate variations in evaporation and moisture convergence, as well as precipitation, then we will have greater confidence in our ability to at least model precipitation variations. Therefore, we describe here just how well we can model relevant aspects of the global hydrologic cycle. In particular, we determine how well we can model the annual and seasonal mean global precipitation, evaporation, and atmospheric water vapor transport.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): A chronology of documented regional and global warm and cold event records is collated along with documented ecosystem response records and health threat/sequellae records for the historical period. Patterns of societal response to cold periods punctuated by warm periods have been associated with considerable human health impacts, stimulated by blooms in disease vectors such as rodents and insects.