98 resultados para Loop Region


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seasonal trawling was conducted randomly in coastal (depths of 4.6–17 m) waters from St. Augustine, Florida, (29.9°N) to Winyah Bay, South Carolina (33.1°N), during 2000–03, 2008–09, and 2011 to assess annual trends in the relative abundance of sea turtles. A total of 1262 loggerhead sea turtles (Caretta caretta) were captured in 23% (951) of 4207 sampling events. Capture rates (overall and among prevalent 5-cm size classes) were analyzed through the use of a generalized linear model with log link function for the 4097 events that had complete observations for all 25 model parameters. Final models explained 6.6% (70.1–75.0 cm minimum straight-line carapace length [SCLmin]) to 14.9% (75.1–80.0 cm SCLmin) of deviance in the data set. Sampling year, geographic subregion, and distance from shore were retained as significant terms in all final models, and these terms collectively accounted for 6.2% of overall model deviance (range: 4.5–11.7% of variance among 5-cm size classes). We retained 18 parameters only in a subset of final models: 4 as exclusively significant terms, 5 as a mixture of significant or nonsignificant terms, and 9 as exclusively nonsignificant terms. Four parameters also were dropped completely from all final models. The generalized linear model proved appropriate for monitoring trends for this data set that was laden with zero values for catches and was compiled for a globally protected species. Because we could not account for much model deviance, metrics other than those examined in our study may better explain catch variability and, once elucidated, their inclusion in the generalized linear model should improve model fits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies by Enfield and Allen (1980), McLain et al (1985), and others have shown that anomalously warm years in the northern coastal California Current correspond to El Niño conditions in the equatorial Pacific Ocean. Ocean model studies suggest a mechanical link between the northern coastal California Current and the equatorial ocean through long waves that propagate cyclonically along the ocean boundary (McCreary 1976; Clarke 1983; Shriver et al 1991). However, distinct observational evidence of such an oceanic connection is not extensive. Much of the supposed El Niño variation in temperature and sea level data from the coastal California Current region can be associated with the effects of anomalously intense north Pacific atmospheric cyclogenesis, which is frequently augmented during El Niño years (Wallace and Gutzler 1981; Simpson 1983; Emery and Hamilton 1984). This study uses time series of ocean temperature data to distinguish between locally forced effects, initiated by north Pacific atmospheric changes, and remotely forced effects, initiated by equatorial Pacific atmospheric changes related to El Niño events.