49 resultados para Innershelf sediments
Resumo:
Biodiversity and distribution of benthic Foraminifera and Ostracoda in the continental shelf sediments of the Omman Sea was studied in order to indicating of the composition of benthic foraminiferal and ostracodal communities and determining of their relationship with the environmental factors of the Omman Sea. Sediment samples were gathered in winter 2006 from twelve stations ranging in depth from 30 to 103 meters. Environmental factors including depth, temperature, salinity, dissolved Oxygen and pH were measured with a CTD system during sampling time and grain size and total organic matter were measured in laboratory. From the overall 57 benthic foram species, there were 52 identified species belong to 25 genera of 16 families. The cosmopolitan foraminifer, Ammonia beccarii, was common in all sampling stations. The composition of benthic foram communities had a highly positive correlation with depth, salinity and total organic matter. From the overall 30 ostracod species, there were 26 identified species belong to 22 genera of 13 families. Diversity and aboundance of ostracoda of the Oman Sea decreased from east to west and from south to north but increased slightly in the northwest (near the Strait of Hormoz). Ostracoda of the genus Propontocypris were common in all sampling stations but the genera Cyprideis, Paradoxostom and Hemicytheridea were rare in the Oman Sea. Diversity and aboundance of ostracoda in northern regions were less than southern and were less than foraminifera too. The composition of ostracodal communities had a highly positive correlation with dept, salinity and grain size. Biodiversity and distribution pattern of benthic foraminifera and ostracoda were being different in various sampling stations, especially between northern and southern regions. Water depth, salinity and structure of the sediments were the most important abiotic factors controlling the distribution pattern of benthic foraminifera and ostracoda in the Omman Sea. None existence or rare observation of structural abnormalities and oil polluted individuals in the vicinity of all sampling stations, resulted to the "clean" benthic environment of the Omman Sea.
Resumo:
A total of 5 samples of marine sediments were analyzed for residues of organochlorine insecticide from the coast of Chittagong, Bangladesh. The analytical method consisted of 3 phases, extraction, clean-up and, analysis through Gas Chromatography (GC) with Electron Capture Detector (ECD). The concentration ranges were as follows 0.18 - 1.33 ng.g¹ for aldrin, 0.2 - 1.84 ng.g¹ for dielddrin, 0.30 - 1.31 ng.g¹ for endrin, 0.11 - 0.26 ng.g¹ for lindane, 0.56- 3.36 ng.g¹ for heptachlor, 0.2- 1.51 ng.g¹ for P,P' DDE, 0.18- 2.91 ng.g¹ for P,P' DDD, 0.11 - 3.12 ng.g¹ for P,P' DDT. These results reveal that the sediments along coast of Chittagong are slightly contaminated with some of these organochlorine insecticides.
Resumo:
Charles Darwin the research ship undertook an Oceanographic Cruise in 1986, CD 86/17 of the North Arabian Sea. Sediment cores were collected between 15° and 25°N. In this study sediment cores collected from deep Indus and Oman basins (CD 1715, CD 1730, CD 1738) have been analyzed for mineralogy, water content and porosity. In general, the cores are mainly composed of clay to silt sized terrigenous and biogenic constituents. Quartz, Chlorite and Illite are the common minerals of Arabian Sea sediments. Porosity determined by water content of sediments has been correlated with quartz/chlorite and quartz/illite peak ratios to show a relationship between mineral composition and physical properties.
Resumo:
The water and bottom sediments of Lake Victoria (Kenya) were analysed for A1, Fe, Mn, Zn, Pb, Cu, Cr and Cd. The total metal concentrations were determined and their mean variations and distributions discussed. The bottom lake waters showed higher concentration levels than the surface waters. The range of values (in mg/l) in the bottom and surface lake waters were as follows: Surface Waters: A1(0.08 - 3.98), Fe(0.09 - 4.01), Mn(0.02 - 0.10). Zn(0.01 -0.07), Pb(0.001- 0.007), Cu(not detected - 0.006), Cr(not detected - 0.004). Bottom Waters: A1(0.1 0 - 6.59), Fe(0.23 - 9.64), Mn(0.04 - 0.39), Zn(0.01- 0.08), Pb(0.002 - 0.009), Cu(not detected - 0.03). Cr(not detected -0.002). River mouths and shallow areas in the lake showed higher total metal concentrations than offshore deeper areas. Apart from natural metal levels, varied urban activities and wastes greatly contribute to the lake metal pollution as shown by high Pb and Zn levels in sediments, around Kisumu and Homa Bay areas. Other comparatively high values and variations could be attributed to the varied geological characteristics of the lake and its sediments. Compared to the established W.H.O (1984) drinking water standards manganese, aluminium and iron levels were above these limits whereas zinc, lead, chromium, copper and cadmium were below.