85 resultados para Identification.
Resumo:
Stichaeidae, commonly referred to as pricklebacks, are intertidal and subtidal fishes primarily of the North Pacific Ocean. Broad distribution in relatively inaccessible and undersampled habitats has contributed to a general lack of information about this family. In this study, descriptions of early life history stages are presented for 25 species representing 18 genera of stichaeid fishes from the northeastern Pacific Ocean, Bering Sea, and Arctic Ocean Basin. Six of these species also occur in the North Atlantic Ocean. Larval stages of 16 species are described for the first time. Additional information or illustrations intended to augment previous descriptions are provided for nine species. For most taxa, we present adult and larval distributions, descriptions of morphometric, meristic, and pigmentation characters, and species comparisons, and we provide illustrations for preflexion through postflexion or transformation stages. New counts of meristic features are reported for several species.
Resumo:
Prior to Pietsch’s (1993) revision of the genus Triglops, identification of their larvae was difficult; six species co-occur in the eastern North Pacific Ocean and Bering Sea and three co-occur in the western North Atlantic Ocean. We examined larvae from collections of the Alaska Fisheries Science Center and Atlantic Reference Centre and used updated meristic data, pigment patterns, and morphological characters to identify larvae of Triglops forficatus, T. macellus, T. murrayi, T. nybelini, T. pingeli, and T. scepticus; larvae of T. metopias, T. dorothy, T. jordani, and T. xenostethus have yet to be identified and are thus not included in this paper. Larval Triglops are characterized by a high myomere count (42–54), heavy dorsolateral pigmentation on the gut, and a pointed snout. Among species co-occurring in the eastern North Pacific Ocean, T. forficatus, T. macellus, and T. pingeli larvae are distinguished from each other by meristic counts and presence or absence of a series of postanal ventral melanophores. Triglops scepticus is differentiated from other eastern North Pacific Ocean larvae by having 0–3 postanal ventral melanophores, a large eye, and a large body depth. Among species co-occurring in the western North Atlantic Ocean, T. murrayi and T. pingeli larvae are distinguished from each other by meristic counts (vertebrae, dorsal-fin rays, and anal-fin rays once formed), number of postanal ventral melanophores, and first appearance and size of head spines. Triglops nybelini is distinguished from T. murrayi and T. pingeli by a large eye, pigment on the lateral line and dorsal midline in flexion larvae, and a greater number of dorsal-fin rays and pectoral-fin rays once formed.
Resumo:
Management agencies often use geopolitical boundaries as proxies for biological boundaries. In Hawaiian waters a single stock is recognized of common bottlenose dolphins, Tursiops truncatus, a species that is found both in open water and near-shore among the main Hawaiian Islands. To assess population structure, we photo-identified 336 distinctive individuals from the main Hawaiian Islands, from 2000 to 2006. Their generally shallow-water distribution, and numerous within-year and between-year resightings within island areas suggest that individuals are resident to the islands, rather than part of an offshore population moving through the area. Comparisons of identifications obtained from Kaua‘i/Ni‘ihau, O‘ahu, the “4-island area,” and the island of Hawai‘i showed no evidence of movements among these island groups, although movements from Kaua‘i to Ni‘ihau and among the “4-islands” were documented. A Bayesian analysis examining the probability of missing movements among island groups, given our sample sizes for different areas, indicates that interisland movement rates are less than 1% per year with 95% probability. Our results suggest the existence of multiple demographically independent populations of island-associated common bottlenose dolphins around the main Hawaiian islands.
Resumo:
Twenty-six stocks of Pacific salmon and trout (Oncorhynchus spp.), representing evolutionary significant units (ESU), are listed as threatened or endangered under the Endangered Species Act (ESA) and six more stocks are currently being evaluated for listing. The ecological and economic consequences of these listings are large; therefore considerable effort has been made to understand and respond to these declining populations. Until recently, Pacific harbor seals (Phoca vitulina richardsi) on the west coast increased an average of 5% to 7% per year as a result of the Marine Mammal Protection Act of 1972 (Brown and Kohlman2). Pacific salmon are seasonally important prey for harbor seals (Roffe and Mate, 1984; Olesiuk, 1993); therefore quantifying and understanding the interaction between these two protected species is important for Morphobiologically sound management strategies. Because some Pacific salmonid species in a given area may be threatened or endangered, while others are relatively abundant, it is important to distinguish the species of salmonid upon which the harbor seals are preying. This study takes the first step in understanding these interactions by using molecular genetic tools for species-level identification of salmonid skeletal remains recovered from Pacific harbor seal scats.
Resumo:
Catches of important commercial fish such as red sea bream, flat fish, and yellowtail are decreasing in Japan. In order to sustain these species it is especially important that their distribution and biomass at all life stages are known. However, information on the early life stages of these species is limited because identifying the eggs and larvae of such fish is sometimes extremely difficult.
Resumo:
Variation at 13 microsatellite loci was previously surveyed in approximately 7400 chinook salmon (Oncorhynchus tshawytscha) sampled from 50 localities in the Fraser River drainage in southern British Columbia. Evaluation of the utility of the microsatellite variation for population-specific stock identification applications indicated that the accuracy of the stock composition estimates generally improved with an increasing number of loci used in the estimation procedure, but an increase in accuracy was generally marginal after eight loci were used. With 10–14 populations in a simulated fishery sample, the mean error in population-specific estimated stock composition with a 50-popula-tion baseline was <1.4%. Identification of individuals to specific populations was highest for lower Fraser River and lower and North Thompson River populations; an average of 70% of the individual fish were correctly assigned to specific populations. The average error of the estimated percentage for the seven populations present in a coded-wire tag sample was 2% per population. Estimation of stock composition in the lower river commercial net fishery prior to June is of key local fishery management interest. Chinook salmon from the Chilcotin River and Nicola River drainages were important contributors to the early commercial fishery in the lower river because they comprised approximately 50% of the samples from the net fishery prior to mid April.