57 resultados para Hookshaped feed
Resumo:
Feeding experiments were conducted on the postlarvae of Channa striatus with two different live feeds - a copepod (Thermocyclops decipiens) and cladocerans (Moina micrura and Ceriodaphnia comuta) individually and in mixture. Food was provided at the rate of (500±50 Ind/L) and the experiments were carried out in 100 litre capacity tanks for 30 days. Results indicated better weight gain (951.85±28.77%) and survival (92.00<%) of postlarvae fed with mixed live food than individual live feed organisms.
Resumo:
The study was conducted to compare the performance of different nursing practices of giant freshwater prawn (Macrobrachium rosenbergii) post-larvae (PL). Three treatments such as only fertilizers (T1), fertilizers with 5% supplementary feed (local feed) (T2), and 10% commercial feed (T3) were applied in the nursing system of prawn PLs in earthen pond. An earthen pond (315m²) was divided into nine equal small ponds by fine meshed nylon nets. Feeds were used once daily on a tray placed near the pond bottom. There was a significant difference (p<0.05) in some water quality parameters like pH and total alkalinity, but all measured water quality parameters viz. water temperature, transparency, dissolved oxygen and ammonia-nitrogen were within the acceptable range for nursing of prawn PL. The results showed that the mean final lengths of prawn post-larvae were 6.3±0.07 cm, 7.12±0.22 cm and 8.17±0.16 cm in T1, T2 and T3, respectively. There were significant difference (p<0.05) in mean final length of prawn PL among the treatments. Significantly higher (p<0.05) average daily weight gain was observed in T3 (0.071 ±0.007 g) than in T2 (0.052±0.006 g) and T1 (0.031 ±0.002 g). The specific growth rate (SGR) of T3 (8.81±0.26) was found significantly higher (p<0.05) than T2 (8.35±0.22) and T1 (7.42±0.11). Survival rate (%) was also significantly higher (p<0.05) in T3 (66.24±1.58) than in T2 (60.52±1.64) and T1 (53.86±2.71). Therefore, it may be concluded that the growth and survival in prawn nursery was better in commercial feed than only fertilizers and fertilizers with local feeds.
Resumo:
A study was carried out with three replicates to determine the effects of feeding Moina micrura enriched with astaxanthin alone (M1) or astaxanthin in combination with either vitamin E (M2), vitamin D (M3) or Cod Liver oil (M4) on the growth, survival and fatty acid composition of giant fresh water prawn Macrobrachium rosenbergii (de Man) larvae. Growth rate was expressed as the time taken to the settlement of 95% post larvae. Maximum growth, the lowest time taken to the 95% PL settlement (38.5±0.50 days), was observed in larvae fed with M3 Moina. The highest survival rate (66.0±1.00%) was observed in those fed with M4 Moina and the second highest survival (61.0±1.00%) and growth rates (40.0±0.00 days) were shown with M2 Moina. The minimum values for both growth (42.5±0.50 days) and survival (33.0±1.50%) were observed in the group fed un-enriched Moina. Results also showed that the survival of prawn larvae increased as the quantities of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) increased in the dietary Moina. The highest levels of EPA (5.57±0.21%), DHA (3.50±0.21%) and highest total Highly Unsaturated Fatty Acids (HUFA) (13.87±0.68%) were seen in the Moina fed on astaxanthin and Cod Liver Oil (CLO). The results of the study showed that the nutritive quality of Moina, with respect to important fatty acids, can be increased by enrichment and will influence the growth, survival and the fatty acid composition of fresh water prawn larvae fed on them.
Resumo:
One of the major constraints in seabass (Lates calcarifer) culture is feed supply. Details are given of work conducted at AQD regarding the formulation of a 'standard' feed suitable for carnivorous species like the seabass and groupers. Diet formulae for seabass grow-out and for larval rearing are given.
Resumo:
Live 'agiis' have been proven to be a good feed for shrimp for the past ten years by polyculture fish farmers in the province of Capiz, in the island of Panay, west central Philippines. A brief account is given of culture and feeding operations. Its cultivation period is short and seeds are readily available. It can reduce dependence on trash fish which is now getting to be scarce; it also seems much cheaper. Perhaps this fast-growing tiny bivalve can be scientifically investigated by students of aquaculture as feed for other commercial aquaculture species. Its scientific identification can be a good start.
Resumo:
The African catfish (Clarias gariepinus) is a commercially farmed fish in Uganda, second in importance after the Nile tilapia (Oreochromis niloticus). This catfish has gained rapid popularity in aquaculture because of its faster growth and higher pond yields attaining average weight of over one kg with pond yields as high as 3.0 kg/m2 in six months compared to an average weight of 500g and pond yields of 1.2 kg.m2 for the Nile tilapia
Resumo:
The brochure explains the types of feeds needed by fish and how to detail with over feeding. Fish need to be provided enough nutritious food in order to attain big sizes in a short period of time under culture conditions.
Resumo:
The availability of African lungfish (Protopterus aethiopicus) in many communities in Uganda is declining. Indigenous efforts to culture this fish usually produce poor yields and depend on feeding fish fry, minced meat, and leftover food. This study evaluates three formulated diets (diet-1, diet-2, diet-3) fed to wild caught lungfish fingerlings reared in indoor tanks for 77 days. Experimental fish gradually accepted sinking pellets, and marginal increases in average body weight were observed. Mean (± SE) final weight (15.86 ± 0.80 g) for fish fed on diet-3 was significantly higher (p < 0.05) than fish fed diet-1 and diet-2. Specific growth rates (SGR) for diet- 3 were significantly higher (p < 0.05) than diet-1, and marginally more than diet-2 (0.37 ± 0.04 %/ d). Feed conversions were similar (p >0.05), ranging from 1.61 ± 0.26 to 2.07 ± 0.11. Survivals after an 11-week culture were relatively low (< 60%), but generally increased (R2 = 0.667, P = 0.007) with increasing dietary proteins. Diet-3 had a significant higher survival rate (p< 0.05) than diet-1 and diet-2. Significant growth performance was attained with diet-3. This study demonstrated that sinking fish feed pellets can be used to culture wild-caught African fingerlings in captivity.
Resumo:
In the present study, natural occurrence of fungi and aflatoxin B1 (AFB1) in pellet feed and feed ingredients used for rainbow trout was investigated with emphasis to Aspergillus section Flavi members and medicinal plants inhibitory to Aspergillus growth and/or AF production. The feed samples were cultured on the standard isolation media including dichloran rosebengal chloramphenicol agar (DRCA) and Aspergillus flavus/parasiticus agar (AFPA) for 2 weeks at 28 °C. Identification of fungal isolates was implemented based on the macro- and microscopic morphological criteria. AFs were detected using high performance liquid chromatography (HPLC). Based on the results obtained, a total of 109 fungal isolates were identified of which Aspergillus was the prominent genus (57.0%), followed by Penicillium (12.84%), Absidia (11.01%) and Pseudallscheria (10.10%). The most frequent Aspergillus species was A. flavus (60.66%) isolated from all the feed ingredients as well as pellet feed. Among 37 A. flavus isolates, 19 (51.35%) were able to produce AFB1 on yeast extract-sucrose (YES) broth in the range of 10.2 to 612.8 [tg/g fungal dry weight. HPLC analyses of trout feed showed that pellet feed and all feed ingredients tested except gluten were contaminated with different levels of AFB1 in the range of 1.83 to 67.35 lig/kg. In order to finding natural inhibitors of fungal growth and/or AF production, essential oils (EOs) and extracts of 49 medicinal plants were studied against an aflatoxin-producing A. parasiticus using a microbioassay technique. The EOs was analyzed by gas chromatography/mass spectrometry (GC/MS). Based on the results obtained, Achillea millefolium sub sp. elborsensis, Ferula gummosa, Mentha spicata, Azadirachta indica, Conium maculatum and Artemisia dracunculus remarkably inhibited A. parasiticus growth without affecting AF production by the fungus. Besides of Thymus vulgaris and Citrus aurantifolia, the EO of Foeniculum vulgare significantly inhibited both fungal growth (-70.0%) and AFs B1 and G1 (-99.0%) production. The EO of Carum carvi and ethyl acetate extract of Platycladus orientalis suppressed AFs B1 and G1 by more than 90.0%, without any obvious effect on fungal growth. The IC50 values of bioactive plants for AFs B1 and G1 were determined in the ranges of 90.6 to 576.2 and 2.8 to 61.9 µg/ml, respectively. Overall, results of the present study indicate the importance of AF contamination of trout feed as a risk factor for fish farming and thus, an urgent necessity for constant monitoring of trout feed for any unacceptable levels of AF contamination. Likewise, antifungal activities of bioactive plants introduced here would be an important contribution to explain the use of these plants as effective antimicrobial candidates to protect feeds from toxigenic fungus growth and subsequent AF contamination.