427 resultados para Habitat (Ecology)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This is the River Gowy rapid corridor survey July 1995: Ecology South Mersey report produced by the National Rivers Authority North West Region in 1995. This report looks at the survey carried out by the South Mersey Ecology Team prior to routine deweeding operations on the main River Gowy at the end of July, 1995. The survey covered Flood Defence Stretch References RGOW03 to RGOW16. These stretches were further divided into a series of 43 stretches, each one being approximately 500m in length for ease o f mapping by Ecology. Recommendations for each length have been cross-referenced with the Bill of Quantities where possible, e.g. retention o f margins. In Flood Defence stretch RGOW03, the South West Winter Wetland forms an important habitat for birds. In stretches RGOW04 to RGOW05, the Gowy Meadows and Ditches have been designated a Grade A, Site of Biological Importance, by Cheshire County Council due to the nature of the acidic grassland and diverse ditches. In stretches RGOWIO to RGOW11 the left bank forms Hockenhull Platts, Grade A Site of Biological Importance and County Trust Reserve. In stretches RGOW15 to RGOW16, the area from Mill Farm to the Shropshire Union Canal is a Grade A Site of Biological Importance. These sites are very sensitive and detailed recommendations for working practices can be found in the relevant sections o f the survey.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT TRANSCRIBED FROM ENGLE'S PH.D. ORAL DEFENSE PAMPHLET: The natural history of juvenile California spiny lobster, Panulirus interruptus (Randall), was investigated, with primary emphasis placed on ascertaining juvenile habitats, determining juvenile growth rates and component growth processes, and evaluating ecological and behavioral phenomena associated with juvenile survival and growth. Habitat surveys of island and mainland localities throughout southern and lower California revealed that small, greenish juveniles typically inhabit crevices or temporary burrows in 0-4m deep, wave-swept rocky habitats covered by dense beds of surf grass, Phyllospadix torreyi S. Watson. Phyllospadix beds were more abundant on gradually sloping rocky mainland beaches than on steeply sloping island shores. Phyllospadix abundance was positively correlated with P. interruptus abundance; however, at Santa Catalina Island, the Phyllospadix habitat was not extensive enough to be the sole lobster nursery. In laboratory tests, puerulus larvae and early juveniles chose Phyllospadix over rubble rocks or broad-bladed kelp, but did not consistently prefer Phyllospadix over reticulate algae. Ecology, growth, and behavior of juvenile P. interruptus inhabiting a discrete Phyllospadix habitat at Bird Rock, Santa Catalina Island, were investigated from October 1974 through December 1976 by means of frequent scuba surveys. Pueruli settled from June to November. Peak recruitment occurred from July to September, when seasonal temperatures were maximal. Settled larvae were approximately one year old. Juvenile growth was determined by size-frequency, single molt increment, mark-recapture, and laboratory culture studies. Carapace length vs. wet weight relationships fit standard power curve equations. Bird Rock juveniles grew from 7 to 32mm CL in 10-11 molts and from 32 to 56mm CL in 5-6 molts during their first and second benthic years, respectively. Growth rates were similar for males and females. Juveniles regenerating more than two limbs grew less per molt than intact lobsters. Long-term growth of laboratory-reared juveniles was 20% less than that of field lobsters. Growth component multiple regression analyses demonstrated that molt increment was directly proportional to premolt size and temperature for age 1+ lobsters. Molt frequency was inversely proportional to size and directly proportional to temperature. Temperature affected age 2+ lobsters similarly, but molt increment was independent of size, and molt frequency declined at a different rate. Juvenile growth rates more than doubled during warm water months compared to cold water months, primarily because of increased molt frequency. Based on results from this study and from previous investigations, it is estimated that P. interruptus males and females become sexually mature by ages 4 and 5 years, respectively, and that legai size is reached by 7 or 8 years of age. Juvenile P. interruptus activity patterns and foraging behavior were similar to those of adults, except that juvenile home ranges were proportionally smaller, and small juveniles were apparently not attracted to distant food. Small mollusks, abundant in Phyllospadix habitats, were the major food items. Size-dependent predation by fish and octopus apparently caused the considerable juvenile mortality observed at Bird Rock. Juveniles approaching 2 years of age gathered in mixed size-class aggregations by day and foraged beyond the grass beds at night. In autumn, these juveniles migrated to deeper habitats, coincident with new puerulus settlement in the Phyllospadix beds. Based on strong inferences from the results, it is proposed that size-dependent predation is the most important factor determining the !ife history strategy of juvenile P. interruptus. Life history tactics promoting rapid growth apparently function dually in reducing the period of high vulnerability to predation and decreasing the time required to reach sexual maturity. The Phyllospadix habitat is an excellent lobster nursery because it provides shelter from predators and possesses abundant food resources for sustaining optimum juvenile growth rates in shallow, warm water.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Piscivorous fishes, many of which are economically valuable, play an important role in marine ecosystems and have the potential to affect fish and invertebrate populations at lower trophic levels. Therefore, a quantitative understanding of the foraging ecology of piscivores is needed for ecosystem-based fishery management plans to be successful. Abundance and stomach contents of seasonally co-occurring piscivores were examined to determine overlap in resource use for Summer Flounder (Paralichthys dentatus; 206–670 mm total length [TL]), Weakfish (Cynoscion regalis; 80–565 mm TL), Bluefish (Pomatomus saltatrix; 55–732 mm fork length [FL]), and Striped Bass (Morone saxatilis; 422–920 mm FL). We collected samples from monthly, fishery-independent trawl surveys conducted on the inner continental shelf (5–27 m) off New Jersey from June to October 2005. Fish abundances and overlaps in diet and habitat varied over this study period. A wide range of fish and invertebrate prey was consumed by each species. Diet composition (determined from 1997 stomachs with identifiable contents) varied with ontogeny (size) and indicated limited overlap between most of the species size classes examined. Although many prey categories were shared by the piscivores examined, different temporal and spatial patterns in habitat use seemed to alleviate potential competition for prey. Nevertheless, the degree of overlap in both fish distributions and diets increased severalfold in the fall as species left estuaries and migrated across and along the study area. Therefore, the transitional period of fall migration, when fish densities are higher than at other times of the year, may be critical for unraveling resource overlap for these seasonally migrant predators.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Ecological Society of America and NOAA's Offices of Habitat Conservation and Protected Resources sponsored a workshop to develop a national marine and estuarine ecosystem classification system. Among the 22 people involved were scientists who had developed various regional classification systems and managers from NOAA and other federal agencies who might ultimately use this system for conservation and management. The objectives were to: (1) review existing global and regional classification systems; (2) develop the framework of a national classification system; and (3) propose a plan to expand the framework into a comprehensive classification system. Although there has been progress in the development of marine classifications in recent years, these have been either regionally focused (e.g., Pacific islands) or restricted to specific habitats (e.g., wetlands; deep seafloor). Participants in the workshop looked for commonalties across existing classification systems and tried to link these using broad scale factors important to ecosystem structure and function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The US Fish and Wildlife Service Cape Romain National Wildlife Refuge (CRNWR) and the Center for Coastal Environmental Health and Biomolecular Research (CCEHBR) at Charleston are interested in assessing the status of our coastal resources in light of increased coastal development and recreational use. Through an Interagency Agreement (FWS #1448-40181-00-H-001), an ecological characterization was undertaken to describe the status of and potential impacts to resources at CRNWR. This report describes historic fisheries-independent or non-commercial data relevant to CRNWR that can be used to evaluate the role of the Refuge as habitat for nearshore and offshore fish species. The purpose of this document is two-fold, first to give resource managers an understanding of fisheries data that have been collected over the years and, second, to illustrate how these data can be applied to address specific management issues. This report provides an overview of historic fisheries data collected along the southeast coast, as well as basic summaries of that data relevant to CRNWR, indicating how these data can be used to address specific questions of interest to Refuge managers and biologists.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This synthesis presents a science overview of the major forest management Issues involved in the recovery of anadromous salmonids affected by timber harvest in the Pacific Northwest and Alaska. The issues involve the components of ecosystem-based watershed management and how best to implement them, including how to: Design buffer zones to protect fish habitat while enabling economic timber production; Implement effective Best Management Practices (BMPs) to prevent nonpoint-source pollution; Develop watershed-level procedures across property boundaries to prevent cumulative impacts; Develop restoration procedures to contribute to recovery of ecosystem processes; and Enlist support of private landowners in watershed planning, protection, and restoration. Buffer zones, BMPs, cumulative impact prevention, and restoration are essential elements of what must be a comprehensive approach to habitat protection and restoration applied at the watershed level within a larger context of resource concerns in the river basin, species status under the Endangered Species Act (ESA), and regional environmental and economic issues (Fig. ES. 1). This synthesis 1) reviews salmonid habitat requirements and potential effects of logging; 2) describes the technical foundation of forest practices and restoration; 3) analyzes current federal and non-federal forest practices; and 4) recommends required elements of comprehensive watershed management for recovery of anadromous salmonids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The summer flounder, Paralichthys dentatus, is overexploited and is currently at very low levels of abundance. This is reflected in the compressed age structure of the population and the low catches in both commercial and recreational fisheries. Declining habitat quantity and quality may be contributing to these declines, however we lack a thorough understanding of the role of habitats in the population dynamics of this species. Stock structure is unresolved and current interpretations, depending on the technique and study area, suggest that there may be two or three spawning populations. If so, these stocks may have differing habitat requirements. In response to this lack of knowledge, this document summarizes and synthesizes the available information on summer flounder habitat in all life history stages (eggs, larvae, juveniles and adults) and identifies areas where further research is needed. Several levels of investigation were conducted in order to produce this document. First, an extensive search for summer flounder habitat information was made, which included both the primary and gray literature as well as unanalyzed data. Second, state and federal fisheries biologists and resource managers in all states within the primary range of summer flounder (Massachusetts to Florida) were interviewed along with a number of fish ecologists and summer flounder experts from the academic and private sectors. Finally, information from all sources was analyzed and synthesized to form a coherent overview. This document first presents an overview of the economic importance and current status of summer flounder (Chapter 1). It then summarizes our present state of knowledge of summer flounder distribution, life history patterns and stock identification (Chapter 2). This is followed by a synopsis of habitat requirements during each life history stage. For convenience, this is presented by general habitat as offshore eggs (Chapter 3), offshore larvae (Chapter 4), estuarine larvae (Chapter 5), estuarine juveniles (Chapter 6), offshore juveniles (Chapter 7) and estuarine and offshore adults (Chapter 8). In several instances, previously undigested data sets are analyzed to provide more detailed information, especially for estuarine juveniles. The information is then discussed in terms of its relevance to resource managers (Chapter 9).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Range overlap patterns were observed in a dataset of 10,446 expert-derived marine species distribution maps, including 8,295 coastal fishes, 1,212 invertebrates (crustaceans and molluscs), 820 reef-building corals, 50 seagrasses and 69 mangroves. Distributions of tropical Indo-Pacific shore fishes revealed a concentration of species richness in the northern apex and central region of the Coral Triangle epicenter of marine biodiversity. This pattern was supported by distributions of invertebrates and habitat-forming primary producers. Habitat availability, heterogeneity and sea surface temperatures were highly correlated with species richness across spatial grains ranging from 23,000 to 5,100,000 km2 with and without correction for autocorrelation. The consistent retention of habitat variables in our predictive models supports the area of refuge hypothesis which posits reduced extinction rates in the Coral Triangle. This does not preclude support for a center of origin hypothesis that suggests increased speciation in the region may contribute to species richness. In addition, consistent retention of sea surface temperatures in models suggests that available kinetic energy may also be an important factor in shaping patterns of marine species richness. Kinetic energy may hasten rates of both extinction and speciation. The position of the Indo-Pacific Warm Pool to the east of the Coral Triangle in central Oceania and a pattern of increasing species richness from this region into the central and northern parts of the Coral Triangle suggests peripheral speciation with enhanced survival in the cooler parts of the Coral Triangle that also have highly concentrated available habitat. These results indicate that conservation of habitat availability and heterogeneity is important to reduce extinction and that changes in sea surface temperatures may influence the evolutionary potential of the region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coral reef ecosystems are some of the most complex and important ecosystems in the marine environment. They are also among the most biologically diverse and economically valuable ecosystems on earth, producing billions of dollars in food, as well as providing a suite of ecological services, such as recreation and tourism activities and coastal protection from storm and wave action. Yet, despite their value and importance, these fragile ecosystems are declining at an alarming rate (Waddell and Clarke (eds.) 2008) due to a myriad of threats both natural and manmade, including climate change, fishing pressure, and runoff and sedimentation. In response, the Unites States Coal Reef Task Force was established in 1998 by Presidential Executive Order 13089 to lead U.S. efforts to preserve and protect the nation’s coral reef ecosystems. In order to better understand the current state of coral reef ecosystems and successfully mitigate the impacts of stressors, informational products, such as benthic (or sea floor) habitat maps, are critical. Benthic habitat maps support the ability to prioritize areas for further study and protection, and offer a baseline to evaluate the changes in ecosystems over time. In 2000, the United States Coral Reef Task Force charged NOAA with leading federal efforts to produce comprehensive digital maps of all U.S. shallow-water (approximately 0 to 30 m in depth) coral reef ecosystem habitats.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Monitor National Marine Sanctuary (MNMS) was the nation’s first sanctuary, originally established in 1975 to protect the famous civil war ironclad shipwreck, the USS Monitor. Since 2008, sanctuary sponsored archeological research has branched out to include historically significant U-boats and World War II shipwrecks within the larger Graveyard of the Atlantic off the coast of North Carolina. These shipwrecks are not only important for their cultural value, but also as habitat for a wide diversity of fishes, invertebrates and algal species. Additionally, due to their unique location within an important area for biological productivity, the sanctuary and other culturally valuable shipwrecks within the Graveyard of the Atlantic are potential sites for examining community change. For this reason, from June 8-30, 2010, biological and ecological investigations were conducted at four World War II shipwrecks (Keshena, City of Atlanta, Dixie Arrow, EM Clark), as part of the MNMS 2010 Battle of the Atlantic (BOTA) research project. At each shipwreck site, fish community surveys were conducted and benthic photo-quadrats were collected to characterize the mobile conspicuous fish, smaller prey fish, and sessile invertebrate and algal communities. In addition, temperature sensors were placed at all four shipwrecks previously mentioned, as well as an additional shipwreck, the Manuela. The data, which establishes a baseline condition to use in future assessments, suggest strong differences in both the fish and benthic communities among the surveyed shipwrecks based on the oceanographic zone (depth). In order to establish these shipwrecks as sites for detecting community change it is suggested that a subset of locations across the shelf be selected and repeatedly sampled over time. In order to reduce variability within sites for both the benthic and fish communities, a significant number of surveys should be conducted at each location. This sampling strategy will account for the natural differences in community structure that exist across the shelf due to the oceanographic regime, and allow robust statistical analyses of community differences over time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

NOAA has a mandate to explore and understand deep-sea coral ecology under Magnuson-Stevens Sustainable Fisheries Conservation Act Reauthorization of 2009. Deep-sea corals are increasingly considered a proxy for marine biodiversity in the deep-sea because corals create complex structure, and this structure forms important habitat for associated species of shrimp, crabs, sea stars, brittle stars, and fishes. Yet, our understanding of the nature of the relationships between deep-corals and their associated species is incomplete. One of the primary challenges of conducting any type of deep-sea coral (DSC) research is access to the deep-sea. The deep-sea is a remote environment that often requires long surface transits and sophisticated research vehicles like submersibles and remotely operated vehicles (ROVs). The research vehicles often require substantial crew, and the vehicles are typically launched from large research vessels costing many thousands of dollars a day. To overcome the problem of access to the deep-sea, the Deep Coral and Associated Species Taxonomy and Ecology (DeepCAST) Expeditions are pioneering the use of shore-based submersibles equipped to do scientific research. Shore-based subs alleviate the need for expensive ships because they launch and return under their own power. One disadvantage to the approach is that shore-based subs are restricted to nearby sites. The disadvantage is outweighed, however, by the benefit of repeated observations, and the opportunity to reduce the costs of exploration while expanding knowledge of deep-sea coral ecology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Detection and perception of ecological relationships between biota and their surrounding habitats is sensitive to analysis scale and resolution of habitat data. We measured strength of univariate linear correlations between reef fish and seascape variables at multiple spatial scales (25 to 800 m). Correlation strength was used to identify the scale that best associates fish to their surrounding habitat. To evaluate the influence of map resolution, seascape variables were calculated based on 4 separate benthic maps produced using 2 levels of spatial and thematic resolution, respectively. Individual seascape variables explained only 25% of the variability in fish distributions. Length of reef edge was correlated with more aspects of the fish assemblage than other features. Area of seagrass and bare sand correlated with distribution of many fish, not just obligate users. No fish variables correlated with habitat diversity. Individual fish species achieved a wider range of correlations than mobility guilds or the entire fish assemblage. Scales of peak correlation were the same for juveniles and adults in a majority of comparisons. Highly mobile species exhibited broader scales of peak correlation than either resident or moderately mobile fish. Use of different input maps changed perception of the strength and even the scale of peak correlations for many comparisons involving hard bottom edge length and area of sand, whereas results were consistent regardless of map type for comparisons involving area of seagrass and habitat diversity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

NOAA's Biogeograpy Branch, the National Park Service (NPS), US Geological Survey, and the University of the Virgin Islands (UVI) are using acoustice telemetry to quantify spatial patterns and habitat affinities of reef fishes in the US Virgin Islands (USVI). The objective of the study is to define the movements of reef fishes among habitats within and between the Virgin Islands Coral Reef Nationla Monument (VICRNM), adjacent to Virgin Islands National Park (VIIS), and USVI Territorial waters. In order to better understand species habitat utilization patterns and movement of fishes among management regimes and areas open to fishing around St. John, we deployed an array of hydroacoutstic receivers and acoustically tagged reef fishes. A total of 150 fishes, representing 18 species and 10 families were acoustically tagged along the south shore of St. John from July 2006 to June 2008. Thirty six receivers with a detection range of approximately 300m each were deployed in shallow nearshore bays and across the shelf to depths of approximately 30m. Receivers were located within reefs and adjacent to reefs in seagrass, algal beds, or sand habitats. Example results include the movement of lane snappers and blue striped grunts that demonstrated diel movement from reef habitats during daytime hours to offshore seagrass beds at night. Fish associated with reefs that did not have adjacent seagrass beds made more extensive movements than those fishes associated with reefs that had adjacent seagrass habitats. The array comprised of both nearshore and cross shelf location of receives provides information on fine to broad scale fish movement patterns across habitats and among management units to examine the strength of ecological connectivity between management areas and habitats. For more information go to: http://ccma.nos.noaa.gov/ecosystems/ coralreef/acoustic_tracking.html

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This technical memorandum describes a developing project under the direction of NOAA’s Biogeography Branch in consultation with the National Park Service and US Geological Survey to understand and quantify spatial patterns and habitat affinities of reef fishes in the US Virgin Islands. The purpose of this report is to describe and disseminate the initial results from the project and to share information on the location of acoustic receivers and species electronic tag ID codes. The Virgin Islands Coral Reef National Monument (VICRNM), adjacent to Virgin Islands National Park (VIIS), was established by Executive Order in 2000, but resources within the monument are poorly documented and the degree of connectivity to VIIS is unknown. Whereas, VICRNM was established with full protection from resource exploitation, VIIS has incurred resource harvest by fishers since 1956 as allowed in its enabling legislation. Large changes in local reef communities have occurred over the past several decades, in part due to overexploitation. In order to better understand the habitat utilization patterns and movement of fishes among management regimes and areas open to fishing around St, John, an array of hydroacoustic receivers was deployed while a variety of reef fish species were acoustically tagged. In July 2006, nine receivers with a detection range of ca. 350 m were deployed in Lameshur Bay on the south shore of St. John, within VIIS. Receivers were located adjacent to reefs and in seagrass beds, inshore and offshore of these reefs. It was found that lane snappers and bluestriped grunts showed diel movement from reef habitats during daytime hours to offshore seagrass bed at night. Timing of migrations was highly predictable and coincided with changes in sunrise and sunset over the course of the year. Fish associated with reefs that did not have adjacent seagrass beds made more extensive movements than those fishes associated with reefs that had adjacent seagrass habitats. In April 2007, 21 additional receivers were deployed along much of the south shore of St. John (ca. 20 km of shoreline). This current array will address broader-scale movement among management units and examine the potential benefits of the VICRNM to provide adult “spillover” into VIIS and adjacent harvested areas. The results from this work will aid in defining fine to moderate spatial scales of reef fish habitat affinities and in designing and evaluating marine protected areas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Charleston Gyre region is characterized by continuous series of cyclonic eddies that propagate northeastwards before decaying or coalescing with the Gulf Stream south of Cape Hatteras, NC, USA. Over 5 d, chlorophyll-a concentration, zooplankton displacement volume, and zooplankton composition and abundance changed as the eddy moved to the northeast. Surface chlorophyll-a concentration decreased, and zooplankton displacement remained unchanged as the eddy propagated. Zooplankton taxa known to be important dietary constituents of larval fish increased in concentration as the eddy propagated. The concurrent decrease in chlorophyll-a concentration and static zooplankton displacement volume can be explained by initial stimulation of chlorophyll-a concentration by upwelling and nutrient enrichment near the eddy core and to possible grazing as zooplankton with short generation times and large clutch sizes increased in concentration. The zooplankton community did not change significantly within the 5 d that the eddy was tracked, and there was no indication of succession. Mesoscale eddies of the region are dynamic habitats as eddies propagate northeastwards at varying speeds within monthly periods. The abundance of zooplankton important to the diets of larval fish indicates that the region can provide important pelagic nursery habitat for larval fish off the southeast coast of the United States. A month of feeding and growth is more than half the larval duration of most fish spawned over the continental shelf of the southeastern United States in winter.