53 resultados para Growth Model
Resumo:
The green sea urchin (Strongylocentrotus droebachiensis) is important to the economy of Maine. It is the state’s fourth largest fishery by value. The fishery has experienced a continuous decline in landings since 1992 because of decreasing stock abundance. Because determining the age of sea urchins is often difficult, a formal stock assessment demands the development of a size-structured population dynamic model. One of the most important components in a size-structured model is a growth-transition matrix. We developed an approach for estimating the growth-transition matrix using von Bertalanffy growth parameters estimated in previous studies of the green sea urchin off Maine. This approach explicitly considers size-specific variations associated with yearly growth increments for these urchins. The proposed growth-transition matrix can be updated readily with new information on growth, which is important because changes in stock abundance and the ecosystem will likely result in changes in sea urchin key life history parameters including growth. This growth-transition matrix can be readily incorporated into the size-structured stock assessment model that has been developed for assessing the green sea urchin stock off Maine.
Resumo:
Culture of a non-native species, such as the Suminoe oyster (Crassostrea ariakensis), could offset the harvest of the declining native eastern oyster (Crassostrea virginica) fishery in Chesapeake Bay. Because of possible ecological impacts from introducing a fertile non-native species, introduction of sterile triploid oysters has been proposed. However, recent data show that a small percentage of triploid individuals progressively revert toward diploidy, introducing the possibility that Suminoe oysters might establish self-sustaining populations. To assess the risk of Suminoe oyster populations becoming established in Chesapeake Bay, a demographic population model was developed. Parameters modeled were salinity, stocking density, reversion rate, reproductive potential, natural and harvest-induced mortality, growth rates, and effects of various management strategies, including harvest strategies. The probability of a Suminoe oyster population becoming self-sustaining decreased in the model when oysters are grown at low salinity sites, certainty of harvest is high, mini-mum shell length-at-harvest is small, and stocking density is low. From the results of the model, we suggest adopting the proposed management strategies shown by the model to decrease the probability of a Suminoe oyster population becoming self-sustaining. Policy makers and fishery managers can use the model to predict potential outcomes of policy decisions, supporting the ability to make science-based policy decisions about the proposed introduction of triploid Suminoe oysters into the Chesapeake Bay.
Resumo:
Samples of 11,000 King George whiting (Sillaginodes punctata) from the South Australian commercial and recreational catch, supplemented by research samples, were aged from otoliths. Samples were analyzed from three coastal regions and by sex. Most sampling was undertaken at fish processing plants, from which only fish longer than the legal minimum length were obtained. A left-truncated normal distribution of lengths at monthly age was therefore employed as model likelihood. Mean length-at-monthly-age was described by a generalized von Bertalanffy formula with sinusoidal seasonality. Likelihood standard deviation was modeled to vary allometrically with mean length. A range of related formulas (with 6 to 8 parameters) for seasonal mean length at age were compared. In addition to likelihood ratio tests of relative fit, model selection criteria were a minimum occurrence of high uncertainties (>20% SE), of high correlations (>0.9, >0.95, and >0.99) and of parameter estimates at their biological limits, and we sought a model with a minimum number of parameters. A generalized von Bertalanffy formula with t0 fixed at 0 was chosen. The truncated likelihood alleviated the overestimation bias of mean length at age that would otherwise accrue from catch samples being restricted to legal sizes.
Resumo:
The study based on time series marine fish production data during the period of 1983-1984 to 2007-2008 in Bangladesh. For this growth analysis six deterministic time series models are considered. The estimated best fitting models are the cubic, quadratic and quadratic model is appropriate for industrial marine fish production, artisanal marine fish production and total marine fish production in Bangladesh respectively. The study attempts to provide forecasts of marine fish production in Bangladesh for the year of 2008-09 to 2012-13. The magnitude of instability in marine fish production was attempted by computing the coefficient of variation (CV) and the percentage deviation from three years moving average values. The study revealed that the total marine fish production was observed to be relatively stable (CV being 31.85%) compared to the artisanal marine fish production (CV being 32.04%) and industrial marine fish (CV being 47.20%). For the three components of marine fish production the growth rates were different over different time points. The variation of the growth rates in industrial marine fish production was -21.6% to 13.12%, in artisanal marine fish production was 2.39% to 5.29% and in total marine fish production was 11.23% to 24.85% during the study period.
Resumo:
An investigation on growth, production and fishery of three Indian major carps: rohu, Labeo rohita, catla, Catla catla and mrigal, Cirrhinus mrigala and three exotic carps: silver carp, Hypophthalmichthys molitrix, grass carp, Ctenopharyngodon idella, and common carp, Cyprinus carpio was carried out in Nasti baor during February to April months. In catch per unit effort (CPUE) study the highest catch/day/person (3.13 kg) and catch/day/gear (40.65 kg) was recorded in the month of March for kochal fishing. In komar fishing catch/day/person (15.08 kg) and catch/day/gear (1206 kg) was also found higher in March. Komar fishing was done only in March and April and its CPUE was greater in both the months than that of kochal. The average recovery rate (combination of all six species) was 37.80 considering the stocking from July month of the previous year. The recovery rate of common carp (54.1) was the highest and lowest (13.90) in case of silver carp. When the recovery was calculated on the basis of one year data and stocking, it was 55.6%. Analysis of production model revealed that the present production (54,806 kg/year) is less than both theoretical production (model I- 85,285 kg/year and model II -75,952 kg/year) estimated. Therefore, it may be concluded that the fish production from Nasti baor could still be increased from the present level of production.
Resumo:
The ever-increasing population of the world and the growing need for animal protein has doubled the modern man’s demand for food. Additionally, the improvement in the general public health, and the worsening of environmental/ecological pollution have prompted today’s world to look for ways to procure healthy food. And one such attempt is the use of natural preservatives to decrease the bacterial load in foodstuffs, in other words, to increase their durability. This study evaluates the effects of different concentrations of Zataria multiflora Bioss (EO 0, 0.005, 0.015, 0.045, 0.135, 0.405%) and Nisin (0, 0.25, 0.5, 0.75 μg/ml) and storage time (9 days) on the growth of Lactococcus garvieae Ir-170A(856bp) alone, and their combination in a food model system (fillets of the rainbow trout (Oncorhynchus mykiss). Additionally, the growth of a sample of this bacteria in laboratory conditions was studied. The results of this study showed that different concentrations of Nisin had a significant impact (p<0.05) on Lactococcus garvieae. With the value of t in 0.75 μg/ml, the effectiveness rose to 65.77%; the biggest effect on Lactococcus garvieae. And the effect at 4 0C exceeded 80C. The study has also demonstrated that all concentrations of Zataria multiflora Bioss were effective against Lactococcus garvieae. However, with the value of t at 0.405%, the effectiveness was 71.91%. This value had the biggest effect on Lactococcus garvieae. At 4 0C, the effect surpassed the one at 80C. The synergistic effects of the EO and Nisin showed that with the value of t at 0.405% EO and 0.75 μg/ml Nisin was 14.62% had the greatest effect on Lactococcus garvieae. In this study, multi-factorial effects for different concentrations of Zataria multiflora Bioss (EO 0, 0.005, 0.015, 0.0025%), three different concentrations of 122 Nisin (0, 0.25,0.75 μg/ml) and two different levels of PH (5.5 , 7) at two incubation temperatures (15,37) on logp% of Lactococcus garvieae during 43 days in BHI broth were evaluated. Most of the effects on Lactococcus garvieae occurred in PH 5.5 and at a temperature of 150C.
Resumo:
Fish are an important part of a healthy diet since they contain high quality protein, but typically present a low fat percent when compared to other meats. Fish is an extremely perishable food commodity. On the other hand, food borne diseases are still a major problem in the world, even in well-developed countries. The increasing incidence of food borne diseases coupled with the resultant social and economic implications means there is a constant striving to produce safer food and to develop new antimicrobial agents concerns over the safety of some chemical preservatives and negative consumer reactions to preservatives they perceive as chemical and artificial, have prompted on increased interest in more ‘‘naturalgreen’’ alternatives for the maintenance or extension of product shelf-life. Particular interest has focused on the potential applications of plant essential oils. However, to establish the usefulness of natural antimicrobial preservatives, they must be evaluated alone and in combination with other preservation factors to determine whether there are synergistic effects and multiple hurdles can be devised. In this study, were evaluated the effects of different concentrations of Rosmarinus officinalis and nisin and storage time (15 days) on growth of Streptococcus iniae GQ850377 in a lab conditions and a food model system (fillets of rainbow trout) in 4 and 8 °C. In addition, we also studied multi factorial effects of four different concentration of rosemary, three different concentrations of nisin, two different levels of pH in 3 temperature 4,15 and 37 °C on log% of S.iniae during 43 days in BHI broth. The results on growth of S. iniae were evaluated using SPSS 20.0 statistical software and analyzed the logarithm of total count of the bacterial by Tukey Test. Results were considered statistically significant when P<0.05. MIC and MBC values of rosemary and nisin were 0.03, 0.075 % and 5, 40 μg/mL, respectively. The growth of S. iniae was effected significantly (P<0.05) by rosemary and nisin and also combination of rosemary and nisin in 4 and 8 °C. Samples treated with 0.135 and 0.405 % of rosemary showed a significant decrease on the growth of the bacteria compared with control sample(P<0.05). The most ١٤٦ inhibitory effects were seen in samples treated with 0.135 and 0.405% of rosemary until 9 days after storage. Also, the synergism effects of rosemary and nisin on the growth rate of bacteria was significant (P<0.05) compared with untreated samples and samples treated with the rosemary or nisin, only. Synergistic effects was observed at concentration of 0.405% rosemary and 0.75 μg/mL nisin in both temprature. Results of this study showed that different concentration of rosemary a significant inhibitory effect (P<0.05) on log% of S. iniae, in BHI broth in pH 5.5 and 7 in 4,15 and 37 °C during 43 days. In concentration of 0% rosemary (control) in pH 5.5 and 7 and 37°C, log% were 1.099 and 3.15, whereas in concentration of 0.015% rosemary were -4/241 and 1.454, respectively. The use of essential oils may improve food safety and overall microbial quality. If essential oils were to be more widely applied as antibacterials in foods, the organoleptic impact would be important. In addition, it is recommended to apply essential oils or their compounds as part of a hurdle system and to use it as an antimicrobial component along with other preservation techniques. Thus essential of R. officinalis with high antibacterial activity selected in this study could be a potential source for inhibitory substances against some food-borne pathogens and they may be candidates for using in foods or food-processing systems.
Resumo:
There is an increasing demand in developing newer and safer methods in preserving food products.Among which herbal additives seem to attract evermore attention recently.the major advantage of herbal additives is due to their favorable aroma besides their antimicrobial effects and less expensive than chemical additives. Zataria multiflora Boiss is a native Iranian herb which is used vastly as a food preserver essential oils and also medical usage. Metabolites of harmless bacteria, such as Nisin are also known to be safe preservatives that have antimicrobial activity. However to establish the usefulness of natural antimicrobial preservatives, they must be evaluated alone and in combination with other preservation factors to determine whether there are synergistic effects in rigid media . In this study were evaluated the effects of different concentrations of Zataria multiflora (EO 0, 0.005, 0.015, 0.045, 0.135, 0.405 ,0.810 %) and Nisin(0, 0.15, 0.25, 0.75 μg/ml) and Storage time (up to 21 days) on growth of Staphylococcus aureus ATCC 6538 in a food model system(light salted fish of silver carp, Hypophthalmichthys molitrix). The results on growth of S. aureus were evaluated using SPSS 15.0 statistical software (SPSS 15.0 for windows, SPSS Inc.) and analyzed the logarithm of total count of the bacteria by Tukey Test. Results were considered statistically significant when P≤0.05. The growth of Staphylococcus aureus was affected significantly(P<0.05) by EO and Nisin and also combinations of EO and Nisin. Samples treated with 0.135, 0.405 and 0.810% of thyme essential oil showed a significant decrease on the growth of the bacteria compared with an treated samples(P<0.05). No significant difference was seen on the growth of S.aureus in samples treated with lower concentrations of Z.multiflora(below 0.045%) and untreated group(P>0.05). The most inhibitory effects were seen in samples treated with 0.405% and 0.810% of thyme essential oil until 9 and 12 days after storage,respectively. Also there was significant inhibtory effect(P<0.05) in different concentration of nisin on the organism compared with an treated samples. The synergism effects of the Eo and nisin on the growth rate of the bacteria was significant (P<0.05) compared with untreated samples and samples treated with the Eo or nisin, only. Synergismic effects was observed at concentration of 0.405 and 0.810% of Z. multiflora essential oil with 0.25 μg/ml Nisin, respectively until 15 days after storage. As expected it is preferred to apply the least possible amounts of additives in food preserving that not only are effective and safe but are economically justifiable.