71 resultados para Floods -- Catalonia -- Calonge -- 2005


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The rising temperature of the world’s oceans has become a major threat to coral reefs globally as the severity and frequency of mass coral bleaching and mortality events increase. In 2005, high ocean temperatures in the tropical Atlantic and Caribbean resulted in the most severe bleaching event ever recorded in the basin. Methodology/Principal Findings: Satellite-based tools provided warnings for coral reef managers and scientists, guiding both the timing and location of researchers’ field observations as anomalously warm conditions developed and spread across the greater Caribbean region from June to October 2005. Field surveys of bleaching and mortality exceeded prior efforts in detail and extent, and provided a new standard for documenting the effects of bleaching and for testing nowcast and forecast products. Collaborators from 22 countries undertook the most comprehensive documentation of basin-scale bleaching to date and found that over 80% of corals bleached and over 40% died at many sites. The most severe bleaching coincided with waters nearest a western Atlantic warm pool that was centered off the northern end of the Lesser Antilles. Conclusions/Significance: Thermal stress during the 2005 event exceeded any observed from the Caribbean in the prior 20 years, and regionally-averaged temperatures were the warmest in over 150 years. Comparison of satellite data against field surveys demonstrated a significant predictive relationship between accumulated heat stress (measured using NOAA Coral Reef Watch’s Degree Heating Weeks) and bleaching intensity. This severe, widespread bleaching and mortality will undoubtedly have long-term consequences for reef ecosystems and suggests a troubled future for tropical marine ecosystems under a warming climate

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Biscayne Bay bait (1986–2005) and food (1989–2005) fisheries for pink shrimp were examined using dealer-reported individual vessel-trip landings data, separated by waterbody code to represent only catches from Biscayne Bay. Annual landings varied little during the 1980’s and early 1990’s, and landings of the bait shrimp fishery exceeded those of the food shrimp fishery. The number of trips and landings in both fisheries increased from the late 1990’s through 2002 and food shrimp landings exceeded landings of bait shrimp; landings in both fisheries decreased sharply in 2003. Landings in both fisheries increased in 2004 and 2005, but the increase in food shrimp landings was stronger. Annual catch per trip was much lower in the bait fishery than the food fishery. Each fishery exploited shrimp of a different size. The bait fishery targeted shrimp less than 19 mm carapace length (CL), whereas the food fishery caught shrimp greater than 19 mm CL. We compared monthly bait shrimp catch per unit of effort (CPUE) from the fishery to an estimate of shrimp density from a fishery-independent sampling effort over a 3-yr period and found a strong statistical relationship with the density estimate lagged by 3 mo. The relationship supported the use of bait shrimp fishery CPUE as an index of abundance in upcoming assessments of the effect of a massive water-management-based ecosystem restoration project on pink shrimp in Biscayne Bay. Project implementation will affect freshwater inflows to the bay and salinity patterns. An abundance index with a lengthy pre-implementation history that can be carried into the operational phase of the restoration project will be invaluable in assessing project effects and protecting an important fishery resource of Biscayne Bay. The bait shrimp fishery can provide a continuing index of shrimp abundance from late 1986 forward.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The National Oceanic and Atmospheric Administration (NOAA), in cooperation with the New Jersey Marine Sciences Consortium (NJMSC), hosted a workshop at Rutgers University on 19-21 September 2005 to explore ways to link the U.S. Integrated Ocean Observing System (IOOS) to the emerging infrastructure of the National Water Quality Monitoring Network (NWQMN). Participating partners included the Mid-Atlantic Coastal Ocean Observing Regional Association, U.S. Geological Survey, Rutgers University Coastal Ocean Observing Laboratory, and the New Jersey Sea Grant College. The workshop was designed to highlight the importance of ecological and human health linkages in the movement of materials, nutrients, organisms and contaminants along the Delaware Bay watershed-estuary-coastal waters gradient (hereinafter, the “Delaware Bay Ecosystem [DBE]”), and to address specific water quality issues in the mid-Atlantic region, especially the area comprising the Delaware River drainage and near-shore waters. Attendees included federal, state and municipal officials, coastal managers, members of academic and research institutions, and industry representatives. The primary goal of the effort was to identify key management issues and related scientific questions that could be addressed by a comprehensive IOOS-NWQMN infrastructure (US Commission on Ocean Policy 2004; U.S. Ocean Action Plan 2004). At a minimum, cooperative efforts among the three federal agencies (NOAA, USGS and EPA) involved in water quality monitoring were required. Further and recommended by the U.S. Commission on Ocean Policy, outreach to states, regional organizations, and tribes was necessary to develop an efficient system of data gathering, quality assurance and quality control protocols, product development, and information dissemination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This CD contains summary data of bottlenose dolphins stranded in South Carolina using a Geographical Information System (GIS) and contains two published manuscripts in .pdf files. The intent of this CD is to provide data on bottlenose dolphin strandings in South Carolina to marine mammal researchers and managers. This CD is an accumulation of 14 years of stranding data collected through the collaborations of the National Ocean Service, Center for Coastal Environmental Health and Biomolecular Research (CCEHBR), the South Carolina Department of Natural Resources, and numerous volunteers and veterinarians that comprised the South Carolina Marine Mammal Stranding Network. Spatial and temporal information can be visually represented on maps using GIS. For this CD, maps were created to show relationships of stranding densities with land use, human population density, human interaction with dolphins, high geographical regions of live strandings, and seasonal changes. Point maps were also created to show individual strandings within South Carolina. In summary, spatial analysis revealed higher densities of bottlenose dolphin strandings in Charleston and Beaufort Counties, which consist of urban land with agricultural input. This trend was positively correlated with higher human population levels in these coastal counties as compared with other coastal counties. However, spatial analysis revealed that certain areas within a county may have low human population levels but high stranding density, suggesting that the level of effort to respond to strandings is not necessarily positively correlated with the density of strandings in South Carolina. Temporal analysis revealed a significantly higher density of bottlenose dolphin strandings in the northern portion of the State in the fall, mostly due to an increase of neonate strandings. On a finer geographic scale, seasonal stranding densities may fluctuate depending on the region of interest. Charleston Harbor had the highest density of live bottlenose dolphin strandings compared to the rest of the State. This was due in large part to the number of live dolphin entanglements in the crab pot fishery, the largest source of fishery-related mortality for bottlenose dolphins in South Carolina (Burdett and McFee 2004). Spatial density calculations also revealed that Charleston and Beaufort accounted for the majority of dolphins that were involved with human activities. 1

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A meeting was convened on February 22-24, 2005 in Charleston, South Carolina to bring together researchers collaborating on the Bottlenose Dolphin Health and Risk Assessment (HERA) Project to review and discuss preliminary health-related findings from captured dolphins during 2003 and 2004 in the Indian River Lagoon (IRL), FL and Charleston (CHS), SC. Over 30 researchers with diverse research expertise representing government, academic and marine institutions participated in the 2-1/2 day meeting. The Bottlenose Dolphin HERA Project is a comprehensive, integrated, multi-disciplinary research program designed to assess environmental and anthropogenic stressors, as well as the health and long-term viability of Atlantic bottlenose dolphins (Tursiops truncatus). Standardized and comprehensive protocols are being used to evaluate dolphin health in the coastal ecosystems in the IRL and CHS. The Bottlenose Dolphin Health and Risk Assessment (HERA) Project was initiated in 2003 by Dr. Patricia Fair at the National Oceanic and Atmospheric Administration/National Ocean Service/Center for Coastal Environmental Health and Biomolecular Research and Dr. Gregory Bossart at the Harbor Branch Oceanographic Institution under NMFS Scientific Research Permit No. 998-1678-00 issued to Dr. Bossart. Towards this end, this study focuses on developing tools and techniques to better identify health threats to these dolphins, and to develop links to possible environmental stressors. Thus, the primary objective of the Dolphin HERA Project is to measure the overall health and as well as the potential health hazards for dolphin populations in the two sites by performing screening-level risk assessments using standardized methods. The screening-level assessment involves capture, sampling and release activities during which physical examinations are performed on dolphins and a suite of nonlethal morphologic and clinicopathologic parameters, to be used to develop indices of dolphin health, are collected. Thus far, standardized health assessments have been performed on 155 dolphins during capture-release studies conducted in Years 2003 and 2004 at the two sites. A major collaboration has been established involving numerous individuals and institutions, which provide the project with a broad assessment capability toward accomplishing the goals and objectives of this project.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

EXTRACT (SEE PDF FOR FULL ABSTRACT): We examined atmospheric circulation conditions conducive to occurrence of winter floods that exceed the 10-year peak discharge on rivers in six hydroclimatic subregions in Arizona, southern Utah, Nevada, and California. ... This relationship between flooding and broad-scale atmospheric patterns in the modern record will aid in paleoclimatic interpretations of paleoflood records over the last few thousand years.