79 resultados para Ecological Transition
Resumo:
This report to the Thames Water Authority and Central Water Planning Unit is on research carried out in conjunction with the Stage 1 Group Pumping Test of five boreholes in the upper Lambourn Group for a period of three months in September, October and November 1975. The aim of the study was to assess the ecological effects of the pumpin g of five bore-holes in the upper Lambourn. That is, to determine how the seasonal sequence of ecological events in the river differed from what would hav e occurred had no pumping taken place. Since this 'experiment' has no control it is not possible to make a direct assessment. Nevertheless, by careful monitoring of ecological events before, during and after the pumping it is possible to document changes in th e river and by reference to the data already available for the Rive r Lambourn, normal seasonal changes in the flora and fauna can be separated from changes which may be attributable to the pumping and subsequent events.
Resumo:
At the present time hydrobiological indicators are widely used for the control of surface water quality. Results of the applying of methods suggested at the 1st Soviet-American seminar (1975), development of improved methods and estimation of their usefulness for various conditions are presented in this report. Among the criteria permitting an estimation of the degree and character of changes in water quality and their connection with the functioning of river ecosystems in general, the biological tests of natural waters appears to be the most universal one and is being carried out in two main directions — ecological and physiological. This study summarises approaches in both directions.
Resumo:
Sub-lethal toxicity tests, such as the scope-for-growth test, reveal simple relationships between measures of contaminant concentration and effect on respiratory and feeding physiology. Simple models are presented to investigate the potential impact of different mechanisms of chronic sub-lethal toxicity on these physiological processes. Since environmental quality is variable, even in unimpacted environments, toxicants may have differentially greater impacts in poor compared to higher quality environments. The models illustrate the implications of different degrees and mechanisms of toxicity in response to variability in the quality of the feeding environment, and variability in standard metabolic rate. The models suggest that the relationships between measured degrees of toxic stress, and the maintenance ration required to maintain zero scope-for-growth, may be highly nonlinear. In addition it may be possible to define critical levels of sub-lethal toxic effect above which no environment is of sufficient quality to permit prolonged survival.
Resumo:
The European Water Framework Directive requires member states to restore aquatic habitats to good ecological status (quality) by 2015. Good ecological status is defined as slightly different from high status, which, according to the Directive, means negligible human influence. This poses problems enough for restoration of natural habitats but artificial reservoirs are not excluded from the Directive. They must be restored to good ecological potential. The meaning of good ecological status is linked to that of 'high' ecological status, the pristine reference condition for aquatic habitats under the Directive. From the point of view of an ecologist, this is taken to mean the presence of four fundamental characteristics: nutrient parsimony, characteristic biological and physical structure, connectivity within a wider system and adequate size to give resilience of the biological communities to environmental change. These characteristics are strongly interrelated. Ecological potential must bear some relationship to ecological status but since the reference state for ecological quality is near absence of human impact, it is difficult to see how the criteria for ecological status can be applied to a completely man-made entity where the purpose of the dam is deliberately to interfere with the natural characteristics of a river or former natural lake. Rservoirs are disabled lakes, ususally lakcing the diversity and function provided by a littoral zone. Nonetheless, pragmatic approaches to increasing the biodiversity of reservours are reviewed and conclusions drawn as to the likely effectivemess of the legislation.
Resumo:
Protozoa feed on and regulate the abundance of most types of aquatic microorganisms, and they are an integral part of all aquatic microbial food webs. Being so small, aerobic protozoa thrive at low oxygen tensions, where they feed (largely unaffected by metazoan grazing) on the abundance of other microorganisms. In anaerobic environments, they are the only phagotrophic organisms, and they live in unique symbiotic consortia with methanogens, sulphate reducers and non-sulphur purple bacteria. The number of extant species of protozoa may be quite modest (the global number of ciliate species is estimated at 3000), and most of them probably have cosmopolitan distributions. This will undoubtedly make it easier to carry out further tasks, e.g. understanding the role of protozoan species diversity in the natural environment.
Resumo:
The submerged vegetation of Lake Kariba is described in relation to degree of slope (lake morphometry), depth and light transparency. The direct gradient analysis technique - canonical correspondence analysis and the TWINSPAN classification programs were used to analyse the data set. The western end of the lake with low transparency has a low species diversity (with Vallisneria aethiopica dominating). Species diversity increases with increased transparency in the other parts of the lake. The classification revealed monospecific communities for all species as well as mixed communities with Lagarosiphon as the associate species with the broadest distribution. The ordination revealed a first axis strongly related to the depth and transparency gradients and the second axis related to slope.
Resumo:
Surveys were conducted to evaluate and compare assemblage structure and trophodynamics of ichthyoplankton, and their variability, in an estuarine transition zone. Environmental gradients in the saltfront region of the Patuxent River subestuary, Chesapeake Bay, were hypothesized to define spatiotemporal distributions and assemblages of ichthyoplankton. Larval fishes, zooplankton, and hydrographic data were collected during spring through early summer 2000 and 2001. Larvae of 28 fish species were collected and species richness was similar each year. Total larval abundance was highest in the oligohaline region down-estuary of the salt front in 2000, but highest at the salt front in 2001. Larvae of anadromous fishes were most abundant at or up-estuary of the salt front in both years. Two ichthyoplankton assemblages were distinguished: 1) riverine—characterized predominantly by anadromous species (Moronidae and Alosinae); and 2) estuarine—characterized predominantly by naked goby (Gobiosoma bosc) (Gobiidae). Temperature, dissolved oxygen, salinity-associated variables (e.g., salt-front location), and concentrations of larval prey, specifically the calanoid copepod Eurytemora affinis and the cladoceran Bosmina longirostris, were important indicators of larval fish abundance. In the tidal freshwater region up-estuary of the salt front, there was substantial diet overlap between congeneric striped bass (Morone saxatilis) and white perch (M. americana) larvae, and also larvae of alewife (Alosa pseudoharengus) (overlap= 0.71–0.93). Larval abundance, taxonomic diversity, and dietary overlap were highest within and up-estuary of the salt front, which serves to both structure the ichthyoplankton community and control trophic relationships in the estuarine transition zone.
Resumo:
Environmental variability affects the distributions of most marine fish species. In this analysis, assemblages of rockfish (Sebastes spp.) species were defined on the basis of similarities in their distributions along environmental gradients. Data from 14 bottom trawl surveys of the Gulf of Alaska and Aleutian Islands (n=6767) were used. Five distinct assemblages of rockfish were defined by geographical position, depth, and temperature. The 180-m and 275-m depth contours were major divisions between assemblages inhabiting the shelf, shelf break, and lower continental slope. Another noticeable division was between species centered in southeastern Alaska and those found in the northern Gulf of Alaska and Aleutian Islands. The use of environmental variables to define the species composition of assemblages is different from the use of traditional methods based on clustering and nonparametric statistics and as such, environmentally based analyses should result in predictable assemblages of species that are useful for ecosystem-based management.
Resumo:
This study summarizes previously published and updated empirical relations for the estimation of production/biomass ratios in benthic invertebrates; of natural mortality in benthic invertebrates and finfish; and of respiration from production and vice versa in animal populations. AMS-EXCEL spreadsheet containing these equations is available from the author via Email. They are also included in the Ecopath with Ecosim software.
Resumo:
A brief review of the status of the ECOPATH modeling approach and software is presented, with emphasis on the recent release of a Windows version (ECOPATH 3.0), which enables consideration of uncertainties, and sets the stage for simulation modeling using ECOSIM. Modeling of coral reefs is emphasized.
Resumo:
The article provides insights on agroecosystem modeling and analysis with ECOPATH II.
Resumo:
A discussion is presented on the topic of statistical data analysis in the field of ecology, emphasizing the importance of computer programmes being user friendly for the ecologist. Particular reference is given to TWINSPAN, CANOCO and PATN and the applications of these programmes to tropical fisheries and coastal zone management.
Resumo:
In this note we describe the re-formation of a spawning aggregation of mutton snapper (Lutjanus analis). A review of four consecutive years of survey data indicates that the aggregation may be increasing in size. Mutton snapper are distributed in the temperate and tropical waters of the western Atlantic Ocean from Florida to southeastern Brazil (Burton, 2002). Juveniles and subadults are found in a variety of habitats such as vegetated sand bottoms, bays, and mangrove estuaries (Allen, 1985). Adults are found offshore on coral reefs and other complex hardbottom habitat. They are solitary and wary fish, rarely found in groups or schools except during spawning aggregations (Domeier et al., 1996). Spawning occurs from May through July at Riley’s Hump (Domeier et al., 1996) and peaks in June, as indicated by gonadosomatic indices (M. Burton, unpubl. data). Mutton snapper are highly prized by Florida fishermen for their size and fighting ability, and the majority of landings occur from Cape Canaveral, through the Florida Keys, including the Dry Tortugas (Burton, 2002).
Resumo:
In the 1500’s, the waters of Venezuela and to a lesser extent Colombia produced more natural pearls than any place ever produced in the world in any succeeding century. Atlantic pearl-oysters, Pinctata imbricata Röding 1798, were harvested almost entirely by divers. The pearls from them were exported to Spain and other European countries. By the end of the 1500’s, the pearl oysters had become much scarcer, and little harvesting took place during the 1600’s and 1700’s. Harvesting began to accelerate slowly in the mid 1800’s and has since continued but at a much lower rate than in the 1500’s. The harvesting methods have been hand collecting by divers until the early 1960’s, dredging from the 1500’s to the present, and hardhat diving from 1912 to the early 1960’s. Since the mid 1900’s, Japan and other countries of the western Pacific rim have inundated world markets with cultured pearls that are of better quality and are cheaper than natural pearls, and the marketing of natural pearls has nearly ended. The pearl oyster fishery in Colombia ended in the 1940’s, but it has continued in Venezuela with the fishermen selling the meats to support themselves; previously most meats had been discarded. A small quantity of pearls is now taken, and the fishery, which comprised about 3,000 fishermen in 1947, comprised about 300 in 2002.
Resumo:
A description of fisheries within a depth of 100 fathoms is provided for the eight southeastern-most islands of the Hawaiian Archipelago, known as the main Hawaiian Islands (MHI). These are the inhabited islands of the State of Hawaii and are those most subject to inshore fishing pressure, because of their accessibility. Between 1980 and 1990, an average of 1,300 short tons of fishes and invertebrates were reported annually within 100 fm by commercial fishermen. Total landings may be significantly greater, since fishing is a popular pastime of residents and noncommercial landings are not reported. Although limited data are available on noncommercial fisheries, the majority of this review is based on reported commercial landings. The principal ecological factors influencing fisheries in the MHI include coastal currents, the breadth and steepness of the coastal platform, and differences in windward and leeward climate. Expansive coastal development, increased erosion, and sedimentation are among negative human impacts on inshore reef ecosystems on most islands. Commercial fisheries for large pelagics (tunas and billfishes) are important in inshore areas around Ni'ihau, Ka'ula Rock, Kauai, and the Island of Hawaii (the Big Island), as are bottom "handline" fisheries for snappers and groupers around Kauai and Molokai. However, many more inshore fishermen target reef and estuarine species. Two pelagic carangids, "akule," Selar crumenopthalmus, and "opelu," Decapterus macarellus, support the largest inshore fisheries in the MHI. During 1980-90, reported commercial landings within three miles of shore averaged 203 and 125 t for akule and opelu, respectively. Akule landings are distributed fairly evenly throughout the MHI, while more than 72% of the state's inshore opelu landings take place on the Big Island. Besides akule and opelu, other important commercial fisheries on all the MHI include those for surgeon, soldier, parrot, and goatfishes; snappers; octopus, and various trevallies. Trends in reported landings, trips, and catch per unit effort over the last decade are outlined for these fisheries. In heavily populated areas, fishing pressure appears to exceed the capacity of inshore resources to renew themselves. Management measures are beginning to focus on methods of limiting inshore fishing effort, while trying to maintain residents' access to fishing.