87 resultados para Distribution management
Resumo:
We have extracted, digitized, and analyzed information about bowhead whales, Balaena mysticetus, contained in records of whaling cruises that were undertaken in the Bering, Chukchi, and Beaufort Seas from 1849 to 1914. Our database consists of 65,000 days of observations which provide insights into whether this bowhead stock may comprise more than one population.
Distribution and Abundance of Steller Sea Lions, Eumetopias jubatus, on the Asian Coast, 1720's-2005
Resumo:
We analyzed published and archived records for the past 250 years to assess changes in distribution and abundance of Steller sea lions, Eumetopias jubatus, along the Asian coast from the Bering Strait to the Korean Peninsula. We found that the northern extent of Steller sea lion distribution has not changed but that the southern limit has moved north by some 500–900 km (~300–500 n.mi.) over the past 50 years. Additionally, the number of animals and their distribution has changed on the Commander Islands, Kuril Islands, and Kamchatka Peninsula. We found no changes in the number of rookeries in the northern Sea of Okhotsk, but a new rookery was established at Tuleny Island on the eastern coast of Sakhalin Island. We estimate that the total abundance of Steller sea lions along the Asian coast in the late 19th century was about 115,000 animals; during the 1960’s, the total estimate was about 27,000 (including pups), most of which were in the Kuril Islands. The fewest number of Steller sea lions occurred in the northwestern Pacific in the late 1980’s–early 1990’s when only about 13,000 individuals (including pups) were estimated in the entire region. During the 1990’s, and especially in early 2000, an increasing trend in abundance occurred in most areas. Present estimated abundance of Steller sea lions in Asia is about 16,000 individuals (including about 5,000 pups), about half of which occur in the Kuril Islands. Changes in abundance occurred during all time periods but varied by site and period. Specifically, over the past 150 years Steller sea lion abundance at most sites has changed. There were no rookeries on the Commander Islands between 1850 and 1960 and abundance was low, but by 1977, abundance increased to 4,800 individuals and a rookery was established in the mid 1980’s; abundance there has declined since the early 1980’s and in 2004 only 895 individuals (including 221 pups) were counted during the breeding season. Between 1940 and 2004, abundance along the eastern coast of Kamchatka declined from ~7,000 to ~600 individuals, an overall reduction of 90%. Steller sea lion abundance on the Kuril Islands declined by >90% from the 1800’s to 2005; the most severe decline there occurred during 1969–1981. Steller sea lion numbers in the northern part of the Sea of Okhotsk declined during 1930–2002 from 7,200 to 3,100 individuals. Numbers at Tuleny Island have increased since establishment of a rookery there during 1983–2005 and by immigration from other sites.
Resumo:
Rangia and marsh clams, Rangia cuneata, R. flexuosa, and Polymesoda caroliniana, occur in brackish waters along México’s eastern coast from the northern State of Tamaulipas to the southern State of Campeche. The clams were important to the prehispanic people in the southern part of the State of Veracruz, where they were used as food and as construction material. In modern times, they are harvested for food. The fishermen wade in shallow water and harvest the clams in soft sediments by hand. Annual landings of whole clams during a recent 5-yr period, 1998–2002, were 1,139–1,695 t. The only area with a substantial ongoing clam fishery is in the Lower Papaloapan River Basin, including Alvarado Lagoon, where as many as 450 fishermen are licensed harvesters. This fishery for the Rangia and marsh clams is the most important clam fishery along México’s Gulf Coast.
Resumo:
Twenty-nine verified records of white sharks, Carcharodon carcharias, from British Columbia and Alaska waters (1961–2004) are presented. Record locations ranged from lat. 48°48ʹN to lat. 60°17ʹN, including the northernmost occurrence of a white shark and the first report of this species from the central Bering Sea. White sharks recorded from the study area were generally large, with 95% falling between 3.8 and 5.4 m in length. Mature white sharks of both sexes occur in British Columbia and Alaska waters, although they do not necessarily reproduce there. White sharks actively feed in the study area; their diet is similar to that reported for this species from Washington and northern California waters. Sea surface temperature (SST) concurrent with white shark records from the study area ranged from 16°C to between 6.4°C and 5.0°C, extending the lower extreme of the range of SST from which this species has been previously reported. White shark strandings are rarely reported, yet 16 (55%) of the records in this study are of beached animals; strandings generally occurred later in the year and at lower latitudes than nonstrandings. No significant correlation was found between white shark records in the study area and El Niño events and no records occurred during La Niña events. The data presented here indicate that white sharks are more abundant in the cold waters of British Columbia and Alaska than previous records suggest.
Resumo:
Systematic surveys, along with opportunistic sightings, have provided important information on sea turtle (Cheloniidae and Dermochelydae) distributions, knowledge which can help reduce the risk of harmful human interaction. In 1991 and 1992, the Marine Recreational Fishery Sta- tistics Survey (MRFSS) of the National Ma- rine Fisheries Service, NOAA, provided a unique opportunity to gain additional, synoptic information on the spatial and temporal distribution of sea turtles along the U.S. Atlantic and Gulf of Mexico coasts by asking recreational anglers if they had observed a sea turtle on their fishing trip. During the spring and summer months of those years, as water temperatures warmed, the MRFSS documented an increase in sea turtle sightings in inshore waters and in a northward direction along the U.S. Atlantic Coast and in a westward direction along the northern Gulf of Mexico. This pattern reversed in the late summer and fall months as water temperatures cooled, with sea turtles concentrating along Georgia and both coasts of Florida. Although the MRFSS did not provide species or size composition of sea turtles sighted, and effort varied depending upon location of fishing activity and time of year anglers were queried, it did provide an additional and useful means of ascertaining spatial and temporal distributions of sea turtles along these coasts.
Resumo:
Aerial surveys of belugas, Delphinapterus leucas, in Cook Inlet wre flown each year during June and/or July from 1993 to 2000. This project was designed to delineate distribution and collect aerial counts, elements critical to the managment of this small, isolated stock that was subjected to a persistent harvest by Native hunters. The surveys provided a thorough, annual coverage of the coastal areas of the inlet (1,300 km of shoreline) and included roughly 1,000 km of offshore transects annually. Coastal transects were flown 1.4 km from the waterline, thus surveying most of the area within 3 km of shore. These, along with offshore transects, provided annual systematic searches of 13-33% of the entire inlet. The largest concentration of belugas (151-288 whales by aerial count) was in the northern portion of upper Cook Inlet in the Susitna River Delta and/or in Knik Arm. Another concentration (17-49 whales) was consistently found between Chickaloon River and Point Possession. Smaller groups (generally <20 whales) were occasionally found in Turn-again Arm, Kachemak Bay, Redoubt Bay (Big River), and Trading Bay (McArthur River) prior to 1995 but not thereafter. Over the past three decades, summer distribution has shrunk such that sightings now only rarely occur in lower Cook Inlet and in offshore areas. In the 1990's, most (96-100%) of the sightings were concentrated in a few dense groups in shallow areas near river mouths in upper Cook Inlet.
Resumo:
One particular habitat type in the Middle Atlantic Bight is not well recognized among fishery scientists and managers, although it is will known and used by recreational and commercial fisheries. This habitat consists of a variety of hard-surface, elevated relief "reef" or reef-like environments that are widely distributed across the predominantly flat or undulating, sandy areas of the Bight and include both natural rocky areas and man-made structures, e.g. shipwrecks and artificial reefs. Although there are natural rock and shellfish reefs in southern New England coastal waters and estuaries throughout the Bight, most reef habitats in the region appear to be man-made reef habitat modification/creation may be increasing. Very little effort has been devoted to the study of this habitat's distribution, abundance, use by living marine resources and associated biological communities (except on estuarine oyster reefs) and fishery value or management. This poorly studied and surveyed habitat can provide fish refuge from trawls and can be a factor in studies of the distribution and abundance of a variety of reef-associated fishery resources. This review provides a preliminary summary of information found on relative distribution and abundance of reef habitat in the Bight, the living marine resources and biological communities that commonly use it, threats to this habitat and its biological resources, and the value or potential value of artificial reefs to fishery or habitat and its biological resources, and the value or potential value of artificial reefs to fishery or habitat managers. The purpose of the review is to initiate an awareness among resource managers about this habitat, its role in resource management, and the need for research.
Resumo:
During 1995 and 1996, the National Marine Fisheries Service (NMFS), conducted pilot studies to develop survey methodology and a sampling strategy for assessment of coastal shark populations in the Gulf of Mexico and western North Atlantic. Longline gear similar to that used in the commercial shark fishery was deployed at randomly selected stations within three depth strata per 60 nautical mile gridf rom Brownsville, Tex. to Cape Ann, Mass. The survey methodology and gear design used in these surveys proved effective for capturing many of the small and large coastal sharks regulated under the auspices of the 1993 Fisheries Management Plan (FMP) for Sharks oft he Atlantic Ocean. Shark catch rates, species composition, and relative abundance documented in these pilot surveys were similar to those reported from observer programs monitoring commercial activities. During 78 survey days, 269 bottom longline sets were completed with 879 sharks captured.
Resumo:
Thirty-five tiger sharks, Galeocerdo cuvier, have been reported caught in pelagic longline gearfrom 25 to 265 n.mi. off the Hawaiian Archipelago during December 1990-May 1993. Fifteen sharks were caught farther than 50 n.mi. offshore, indicating that tiger sharks do occur well offshore and removed from benthic topography. About 89% of the sharks were caught during October-March, while only 56% of the fishing effort occurred during that period.
Resumo:
A deep-water trapping survey in the Palauan archipelago, Western Caroline Islands, has revealed an abundance of the Japanese red crab, Chaceon granulatus. The recorded depth range (250-900 m) is similar to that of other geryonids, but the large numbers of females caught below 700 m is atypical. Mean yields in excess of 5 kg crabs plus 1 kg shrimp, Heterocarpus laevigatus, by-catch per trap-night were attainable at optimum depths. Chaceon granulatus is apparently a very large geryonid, with maximum weights of 2.02 kg and 1.51 kg recorded for male and female specimens, respectively. A range of body colors was observed: Orange-red shades appear to dominate the deeper waters (below 500 m) while yellow-tan colors are more abundant in the upper reaches. Preliminary evidence suggests that Chaceon granulatus is highly marketable, and the infrastructure in Palau is such that crabs could either be marketed fresh locally or airfreighted to Japan as a quick-frozen product. The high post-trapping survival rates observed indicate that maintaining crabs in live-holding tanks may be a feasible option. The large catches and quality of deep-water crabs taken suggests that the Palauan population of Chaceon granulatus may be able to support a small-scale fishery. It is not yet known whether this population is unusually large or whether these findings typify the deep forereef fauna of the region.
Resumo:
Basking sharks, Cetorhinus maximus, are frequently observed along the central and northwestern southern California coast during the winter and spring months. These large plankton feeding elasmobranchs, second in size only to the whale shark, Rhineodon typus, had been the subject of a small commercial fishery off California in the late 1940's and early 1950's for their liver oil, rich in vitamin A, and in later years for reduction into fish meal and oil (Roedel and Ripley, 1950). These fisheries were sporadic and did not take basking sharks in large numbers.
Resumo:
Identification of the spatial scale at which marine communities are organized is critical to proper management, yet this is particularly difficult to determine for highly migratory species like sharks. We used shark catch data collected during 2006–09 from fishery-independent bottom-longline surveys, as well as biotic and abiotic explanatory data to identify the factors that affect the distribution of coastal sharks at 2 spatial scales in the northern Gulf of Mexico. Centered principal component analyses (PCAs) were used to visualize the patterns that characterize shark distributions at small (Alabama and Mississippi coast) and large (northern Gulf of Mexico) spatial scales. Environmental data on temperature, salinity, dissolved oxygen (DO), depth, fish and crustacean biomass, and chlorophyll-a (chl-a) concentration were analyzed with normed PCAs at both spatial scales. The relationships between values of shark catch per unit of effort (CPUE) and environmental factors were then analyzed at each scale with co-inertia analysis (COIA). Results from COIA indicated that the degree of agreement between the structure of the environmental and shark data sets was relatively higher at the small spatial scale than at the large one. CPUE of Blacktip Shark (Carcharhinus limbatus) was related positively with crustacean biomass at both spatial scales. Similarly, CPUE of Atlantic Sharpnose Shark (Rhizoprionodon terraenovae) was related positively with chl-a concentration and negatively with DO at both spatial scales. Conversely, distribution of Blacknose Shark (C. acronotus) displayed a contrasting relationship with depth at the 2 scales considered. Our results indicate that the factors influencing the distribution of sharks in the northern Gulf of Mexico are species specific but generally transcend the spatial boundaries used in our analyses.
Resumo:
Cobia (Rachycentron canadum) is a pelagic, migratory species with a transoceanic distribution in tropical and subtropical waters. Recreational fishing pressure on Cobia in the United States has increased substantially during the last decade, especially in areas of its annual inshore aggregations, making this species potentially susceptible to overfishing. Although Cobia along the Atlantic and Gulf coasts of the southeastern United States are currently managed as a single fishery, the genetic composition of Cobias in these areas is unclear. On the basis of a robust microsatellite data set from collections along the U.S. Atlantic coast (2008–09), offshore groups were genetically homogenous. However, the 2 sampled inshore aggregations (South Carolina and Virginia) were genetically distinct from each other, as well as from the offshore group. The recapture of stocked fish within their release estuary 2 years after release indicates that some degree of estuarine fidelity occurs within these inshore aggregations and supports the detection of their unique genetic structure at the population level. These results complement the observed high site fidelity of Cobias in South Carolina and support a recent study that confirms that Cobia spawn in the inshore aggregations. Our increased understanding of Cobia life history will be beneficial for determining the appropriate scale of fishery management for Cobia.
Resumo:
A survey of the larval and juvenile fishes associated with the pelagic Sargassum habitat in the South Atlantic Bight and adjacent western Atlantic Ocean was conducted from July 1991 through March 1993. Fishes representing 104 taxonomic categories were identified, including reef fishes, coastal demersal, coastal pelagic, epipelagic and mesopelagic species. The most important families were Balistidae and Carangidae, each represented by 15 species. Species composition, species diversity and abundance varied both seasonally and regionally. Diversity was highest during spring through fall over the outer continental shelf and in the Gulf Stream. Abundance decreased from spring through winter and from the continental shelf into offshore waters. The numbers of fishes and fish biomass were found to be positively correlated with the wet weight of algae in most cases examined. The results of this study will be useful to fisheries managers assessing the potential impacts of commercial Sargassum harvesting in the region.
Resumo:
Estuaries provide critical nursery habitat for many commercially and recreationally important fish and shellfish species. These productive, diverse ecosystems are particularly vulnerable to pollution because they serve as repositories for non–point-source contaminants from upland sources, such as pesticide runoff. Atrazine, among the most widely used pesticides in the United States, has also been one of the most extensively studied. There has not, however, been a specific assessment of atrazine in marine and estuarine ecosystems. This document characterizes the presence and transformation of atrazine in coastal waters, and the effects of atrazine on marine organisms. Review of marine and estuarine monitoring data indicate that atrazine is chronically present in U.S. coastal waters at relatively low concentrations. The concentrations detected have typically been below acute biological effects levels, and below the U.S. EPA proposed water quality criteria for atrazine. While direct risk of atrazine impacts are low, uncertainty remains regarding the effects of long-term low levels of atrazine in mixture with other contaminants. It is recommended that best management practices, such as the use of vegetative buffers and public education about pesticide use, be encouraged in the coastal zone to minimize runoff of atrazine into marine and estuarine waters.