124 resultados para Coastal zone management -- Australia.
Resumo:
According to the Millennium Ecosystem Assessment’s chapter “Coastal Systems” (Agardy and Alder 2005), 40% of the world population falls within 100 km of the coast. Agardy and Alder report that population densities in coastal regions are three times those of inland regions and demographic forecasts suggest a continued rise in coastal populations. These high population levels can be partially traced to the abundance of ecosystem services provided in the coastal zone. While populations benefit from an abundance of services, population pressure also degrades existing services and leads to increased susceptibility of property and human life to natural hazards. In the face of these challenges, environmental administrators on the coast must pursue agendas which reflect the difficult balance between private and public interests. These decisions include maintaining economic prosperity and personal freedoms, protecting or enhancing the existing flow of ecosystem services to society, and mitigating potential losses from natural hazards. (PDF contains 5 pages)
Resumo:
Historical definitions of what determines whether one lives in a coastal area or not have varied over time. According to Culliton (1998), a “coastal county” is defined as a county with at least 15% of its total land area located within a nation’s coastal watershed. This emphasizes the land areas within which water flows into the ocean or Great Lakes, but may be better suited for ecosystems or water quality research (Crowell et al. 2007). Some Federal Emergency Management Agency (FEMA) documents suggest that “coastal” includes shoreline-adjacent coastal counties, and perhaps even counties impacted by flooding from coastal storms. An accurate definition of “coastal” is critical in this regard since FEMA uses such definitions to revise and modernize their Flood Insurance Rate Maps (Crowell et al. 2007). A recent map published by the National Oceanic and Atmospheric Administration’s (NOAA) Coastal Services Center for the Coastal Change Analysis Program shows that the “coastal” boundary covers the entire state of New York and Michigan, while nearly all of South Carolina is considered “coastal.” The definition of “coastal” one chooses can have major implications, including a simple count of coastal population and the influence of local or state coastal policies. There is, however, one aspect of defining what is “coastal” that has often been overlooked; using atmospheric long-term climate variables to define the inland extent of the coastal zone. This definition, which incorporates temperature, precipitation, wind speed, and relative humidity, is furthermore scalable and globally applicable - even in the face of shifting shorelines. A robust definition using common climate variables should condense the large broad definition often associated with “coastal” such that completely landlocked locations would no longer be considered “coastal.” Moreover, the resulting definition, “coastal climate” or “climatology of the coast”, will help coastal resource managers make better-informed decisions on a wide range of climatologically-influenced issues. The following sections outline the methodology employed to derive some new maps of coastal boundaries in the United States. (PDF contains 3 pages)
Resumo:
With arguably the world’s most decentralized coastal governance regime, the Philippines has implemented integrated coastal management (ICM) for over 30 years as one of the most successful frameworks for coastal resource management in the country. Anthropogenic drivers continue to threaten the food security and livelihood of coastal residents; contributing to the destruction of critical marine habitats, which are heavily relied upon for the goods and services they provide. ICM initiatives in the Philippines have utilized a variety of tools, particularly marine protected areas (MPAs), to promote poverty alleviation through food security and sustainable forms of development. From the time marine reserves were first shown to effectively address habitat degradation and decline in reef fishery production (Alcala et al., 2001) over 1,100 locally managed MPAs have been established in the Philippines; yet only 10-20% of these are effectively managed (White et al., 2006; PhilReefs, 2008). In order to increase management effectiveness, biophysical, legal, institutional and social linkages need to be strengthened and “scaled up” to accommodate a more holistic systems approach (Lowry et al., 2009). This summary paper incorporates the preliminary results of five independently conducted studies. Subject areas covered are the social and institutional elements of MPA networks, ecosystem-based management applicability, financial sustainability and the social vulnerability of coastal residents to climate change in the Central Philippines. Each section will provide insight into these focal areas and suggest how management strategies may be adapted to holistically address these contemporary issues. (PDF contains 4 pages)
Resumo:
In recent years coastal resource management has begun to stand as its own discipline. Its multidisciplinary nature gives it access to theory situated in each of the diverse fields which it may encompass, yet management practices often revert to the primary field of the manager. There is a lack of a common set of “coastal” theory from which managers can draw. Seven resource-related issues with which coastal area managers must contend include: coastal habitat conservation, traditional maritime communities and economies, strong development and use pressures, adaptation to sea level rise and climate change, landscape sustainability and resilience, coastal hazards, and emerging energy technologies. The complexity and range of human and environmental interactions at the coast suggest a strong need for a common body of coastal management theory which managers would do well to understand generally. Planning theory, which itself is a synthesis of concepts from multiple fields, contains ideas generally valuable to coastal management. Planning theory can not only provide an example of how to develop a multi- or transdisciplinary set of theory, but may also provide actual theoretical foundation for a coastal theory. In particular we discuss five concepts in the planning theory discourse and present their utility for coastal resource managers. These include “wicked” problems, ecological planning, the epistemology of knowledge communities, the role of the planner/ manager, and collaborative planning. While these theories are known and familiar to some professionals working at the coast, we argue that there is a need for broader understanding amongst the various specialists working in the increasingly identifiable field of coastal resource management. (PDF contains 4 pages)
Resumo:
The Tanzania Coastal Management Partnership (TCMP) works to implement the National Integrated Coastal Environmental Management Strategy (ICEMS) in Tanzania’s coastal landscapes and seascapes, funded in large measure by the U.S. Agency for International Development. The overarching goal of the Sustainable Coastal Communities and Ecosystems in Tanzania (SUCCESS Tanzania) initiative is to conserve coastal and marine biodiversity while improving the well being of coastal residents through implementation of the Tanzania ICEMS and related ICM policies and strategies. It does this by focusing on three key results: -Policies and Laws that Integrate Conservation and Development Applied -Participatory Landscape Scale Conservation Practiced -Conservation Enterprises Generate Increased and Equitable Benefits from Sustainable Use An additional result sought in the program is gender equity and HIV/AIDS preventive behaviors promoted through communicating HIV/AIDS, environment, and equity messages. (PDF contains 3 pages)
Resumo:
Local communities and local government units are recognized as the primary stakeholders and participants in the management of coral reef resources and the primary beneficiaries of small-scale fishing activities in the nearshore areas of the coastal zone. The issues relating to the management of the coastal zone are multi-faceted and some issues are largely intertwined with national policy and development goals. Thus, national governments have jurisdiction over these nearshore coastal resources to harmonize policies, monitor resource use and provide incentives for sustainable use. However, the natural boundaries of these reef resources, the processes that support reef ecosystems, and the local or national affiliation of the people who benefit from them may transcend the boundaries of the local and national management units. Therefore, efforts to arrest the decline in fish catch and loss of biodiversity for reefs require management interventions and assessment activities to be carried out at varying scales. In Southeast Asia, some aspects of reef and reef resources management — particularly in deciding the allocation of catch among competing fisheries, development of sustainable harvest strategies, use of broodstock for restocking or stock enhancement programs, protection of nursery and spawning areas, designation of systems of marine protected areas, and the identification of representative, adequate and comprehensive areas for biodiversity conservation in the region — may require the definition of larger management units. At the regional level, multi-country initiatives will need to define units for the transboundary management of resources. The use of large marine ecosystems (LMEs) to identify and manage fisheries resources may be a starting point; however, given the relatively sedentary nature of coral reef-dwelling and reef-associated organisms compared with other pelagic and demersal species, meso-scale transboundary units within the LMEs have to be defined. This paper provides suggestions for transboundary management units for coral reef and reef-associated resources in Southeast Asia based on information from genetic structures of model organisms in the region. In addition, specific reef areas are identified, which may be important beyond their national boundaries, as potential sources of recruits.
Resumo:
Estuaries provide critical nursery habitat for many commercially and recreationally important fish and shellfish species. These productive, diverse ecosystems are particularly vulnerable to pollution because they serve as repositories for non–point-source contaminants from upland sources, such as pesticide runoff. Atrazine, among the most widely used pesticides in the United States, has also been one of the most extensively studied. There has not, however, been a specific assessment of atrazine in marine and estuarine ecosystems. This document characterizes the presence and transformation of atrazine in coastal waters, and the effects of atrazine on marine organisms. Review of marine and estuarine monitoring data indicate that atrazine is chronically present in U.S. coastal waters at relatively low concentrations. The concentrations detected have typically been below acute biological effects levels, and below the U.S. EPA proposed water quality criteria for atrazine. While direct risk of atrazine impacts are low, uncertainty remains regarding the effects of long-term low levels of atrazine in mixture with other contaminants. It is recommended that best management practices, such as the use of vegetative buffers and public education about pesticide use, be encouraged in the coastal zone to minimize runoff of atrazine into marine and estuarine waters.
Resumo:
Coastal and marine ecosystems support diverse and important fisheries throughout the nation’s waters, hold vast storehouses of biological diversity, and provide unparalleled recreational opportunities. Some 53% of the total U.S. population live on the 17% of land in the coastal zone, and these areas become more crowded every year. Demands on coastal and marine resources are rapidly increasing, and as coastal areas become more developed, the vulnerability of human settlements to hurricanes, storm surges, and flooding events also increases. Coastal and marine environments are intrinsically linked to climate in many ways. The ocean is an important distributor of the planet’s heat, and this distribution could be strongly influenced by changes in global climate over the 21st century. Sea-level rise is projected to accelerate during the 21st century, with dramatic impacts in low-lying regions where subsidence and erosion problems already exist. Many other impacts of climate change on the oceans are difficult to project, such as the effects on ocean temperatures and precipitation patterns, although the potential consequences of various changes can be assessed to a degree. In other instances, research is demonstrating that global changes may already be significantly impacting marine ecosystems, such as the impact of increasing nitrogen on coastal waters and the direct effect of increasing carbon dioxide on coral reefs. Coastal erosion is already a widespread problem in much of the country and has significant impacts on undeveloped shorelines as well as on coastal development and infrastructure. Along the Pacific Coast, cycles of beach and cliff erosion have been linked to El Niño events that elevate average sea levels over the short term and alter storm tracks that affect erosion and wave damage along the coastline. These impacts will be exacerbated by long-term sea-level rise. Atlantic and Gulf coastlines are especially vulnerable to long-term sea-level rise as well as any increase in the frequency of storm surges or hurricanes. Most erosion events here are the result of storms and extreme events, and the slope of these areas is so gentle that a small rise in sea level produces a large inland shift of the shoreline. When buildings, roads and seawalls block this natural migration, the beaches and shorelines erode, threatening property and infrastructure as well as coastal ecosystems.
Resumo:
Landscape ecology concepts developed from terrestrial systems have recently emerged as theoretical and analytical frameworks that are equally useful for evaluating the ecological consequences of spatial patterns and structural changes in the submerged landscapes of coastal ecosystems. The benefits of applying a spatially-explicit perspective to resource management and restoration planning in the coastal zone are rapidly becoming apparent. This Theme Section on the application of landscape ecology to the estuarine and coastal environment emerged from a special symposium at the Coastal and Estuarine Research Federation (CERF) 20th Biennial Conference (Estuaries and Coasts in a Changing World) held in Portland, Oregon, USA, in November 2009. The 7 contributions in this Theme Section collectively provide substantial insights into the current status and application of the landscape approach in shallow marine environments, and identify significant knowledge gaps, as well as potential directions for the future advancement of ‘seascape ecology’.
Resumo:
Management of coastal species of small cetaceans is often impeded by a lack of robust estimates of their abundance. In the Austral summers of 1997−98, 1998−99, and 1999−2000 we conducted line-transect surveys of Hector’s dolphin (Cephalorhynchus hectori) abundance off the north, east, and south coasts of the South Island of New Zealand. Survey methods were modified for the use of a 15-m sailing catamaran, which was equipped with a collapsible sighting platform giving observers an eye-height of 6 m. Eighty-six percent of 2061 km of survey effort was allocated to inshore waters (4 nautical miles [nmi] or 7.4 km from shore), and the remainder to offshore waters (4−10 nmi or 7.4–18.5 km from shore). Transects were placed at 45° to the shore and spaced apart by 1, 2, 4, or 8 nmi according to pre-existing data on dolphin density. Survey effort within strata was uniform. Detection functions for sheltered waters and open coasts were fitted separately for each survey. The effect of attraction of dolphins to the survey vessel and the fraction of dolphins missed on the trackline were assessed with simultaneous boat and helicopter surveys in January 1999. Hector’s dolphin abundance in the coastal zone to 4 nmi offshore was calculated at 1880 individuals (CV=15.7%, log-normal 95% CI=1384−2554). These surveys are the first line-transect surveys for cetaceans in New Zealand’s coastal waters.
Resumo:
Peter Edwards writes on rural aquaculture: From integrated carp polyculture to intensive monoculture in the Pearl River Delta, South China. Better management practices for Vietnamese catfish. Ipomoea aquatica – an aquaculture friendly macrophyte. A status overview of fisheries and aquaculture development in Pakistan with context to other Asian countries. The changing face of post-grad education in aquaculture: contributing to soaring production and sustainable practices. Hatchery management in Bangladesh. Production of Cirrhinus molitorella and Labeo chrysophekadion for culture based fisheries development in Lao PDR Part I: Captive spawning. Application of ipil-ipil leaf meal as feed Ingredient for monosex tilapia fry (Oreochromis niloticus) in terms of growth and economics. Fermented feed ingredients as fish meal replacer in aquafeed production Aquaculture and fishing management in coastal zone demarcation: the case of Thailand. Reservoir fisheries of freshwater prawn – success story of an emerging culture-based giant freshwater prawn fishery at Malampuzha Dam in Kerala, India. Determining and locating sea cage production area for sustainable tropical aquaculture. SPC Pacific-Asia marine fish mariculture technical workshop: “Farming Marine Fishes for our Future”. Developing Better Management Practices for Marine Finfish Aquaculture. Breeding and seed production of silver pompano (Trachinotus blochii, Lacepede) at the Mariculture Development Center of Batam. Potential of silver pomfret (Pampus argenteus) as a new candidate species for aquaculture. NACA Newsletter.
Resumo:
Executive Summary: Circulation and Exchange of Florida Bay and South Florida Coastal Waters The coastal ecosystem of South Florida is comprised of distinct marine environments. Circulation of surface waters and exchange processes, which respond to both local and regional forcings, interconnect different coastal environments. In addition, re-circulating current systems within the South Florida coastal ecosystem such as the Tortugas Gyre contribute to retention of locally spawned larvae. Variability in salinity, chlorophyll, and light transmittance occurs on a wide range of temporal and spatial scales, in response to both natural forcing, such as seasonal precipitation and evaporation and interannual “El Niño” climate signals, and anthropogenic forcing, such as water management practices in south Florida. The full time series of surface property maps are posted at www.aoml.noaa.gov/sfp. Regional surface circulation patterns, shown by satellite-tracked surface drifters, respond to large-scale forcing such as wind variability and sea level slopes. Recent patterns include slow flow from near the mouth of the Shark River to the Lower Keys, rapid flow from the Tortugas to the shelf of the Carolinas, and flow from the Tortugas around the Tortugas Gyre and out of the Florida Straits. The Southwest Florida Shelf and the Atlantic side of the Florida Keys coastal zone are directly connected by passages between the islands of the Middle and Lower Keys. Movement of water between these regions depends on a combination of local wind-forced currents and gravitydriven transports through the passages, produced by cross-Key sea level differences on time scales of several days to weeks, which arise because of differences in physical characteristics (shape, orientation, and depth) of the shelf on either side of the Keys. A southeastward mean flow transports water from western Florida Bay, which undergoes large variations in water quality, to the reef tract. Adequate sampling of oceanographic events requires both the capability of near real-time recognition of these events, and the flexibility to rapidly stage targeted field sampling. Capacity to respond to events is increasing, as demonstrated by investigations of the 2002 “blackwater” event and a 2003 entrainment of Mississippi River water to the Tortugas. (PDF contains 364 pages.)
Resumo:
The Alliance for Coastal Technologies (ACT) Workshop on Trace Metal Sensors for Coastal Monitoring was convened April 11-13, 2005 at the Embassy Suites in Seaside, California with partnership from Moss Landing Marine Laboratories (MLML) and the Monterey Bay Aquarium Research Institute (MBARI). Trace metals play many important roles in marine ecosystems. Due to their extreme toxicity, the effects of copper, cadmium and certain organo-metallinc compounds (such as tributyltin and methylmercury) have received much attention. Lately, the sublethal effects of metals on phytoplankton biochemistry, and in some cases the expression of neurotoxins (Domoic acid), have been shown to be important environmental forcing functions determining the composition and gene expression in some groups. More recently the role of iron in controlling phytoplankton growth has led to an understanding of trace metal limitation in coastal systems. Although metals play an important role at many different levels, few technologies exist to provide rapid assessment of metal concentrations or metal speciation in the coastal zone where metal-induced toxicity or potential stimulation of harmful algal blooms, can have major economic impacts. This workshop focused on the state of on-site and in situ trace element detection technologies, in terms of what is currently working well and what is needed to effectively inform coastal zone managers, as well as guide adaptive scientific sampling of the coastal zone. Specifically the goals of this workshop were to: 1) summarize current regional requirements and future targets for metal monitoring in freshwater, estuarine and coastal environments; 2) evaluate the current status of metal sensors and possibilities for leveraging emerging technologies for expanding detection limits and target elements; and 3) help identify critical steps needed for and limits to operational deployment of metal sensors as part of routine water quality monitoring efforts. Following a series of breakout group discussions and overview talks on metal monitoring regulatory issues, analytical techniques and market requirements, workshop participants made several recommendations for steps needed to foster development of in situ metal monitoring capacities: 1. Increase scientific and public awareness of metals of environmental and biological concern and their impacts in aquatic environments. Inform scientific and public communities regarding actual levels of trace metals in natural and perturbed systems. 2. Identify multiple use applications (e.g., industrial waste steam and drinking water quality monitoring) to support investments in metal sensor development. (pdf contains 27 pages)
Resumo:
How is climate change affecting our coastal environment? How can coastal communities adapt to sea level rise and increased storm risk? These questions have garnered tremendous interest from scientists and policy makers alike, as the dynamic coastal environment is particularly vulnerable to the impacts of climate change. Over half the world population lives and works in a coastal zone less than 120 miles wide, thereby being continuously affected by the changes in the coastal environment [6]. Housing markets are directly influenced by the physical processes that govern coastal systems. Beach towns like Oak Island in North Carolina (NC) face severe erosion, and the tax assesed value of one coastal property fell by 93% in 2007 [9]. With almost ninety percent of the sandy beaches in the US facing moderate to severe erosion [8], coastal communities often intervene to stabilize the shoreline and hold back the sea in order to protect coastal property and infrastructure. Beach nourishment, which is the process of rebuilding a beach by periodically replacing an eroding section of the beach with sand dredged from another location, is a policy for erosion control in many parts of the US Atlantic and Pacific coasts [3]. Beach nourishment projects in the United States are primarily federally funded and implemented by the Army Corps of Engineers (ACE) after a benefit-cost analysis. Benefits from beach nourishment include reduction in storm damage and recreational benefits from a wider beach. Costs would include the expected cost of construction, present value of periodic maintenance, and any external cost such as the environmental cost associated with a nourishment project (NOAA). Federal appropriations for nourishment totaled $787 million from 1995 to 2002 [10]. Human interventions to stabilize shorelines and physical coastal dynamics are strongly coupled. The value of the beach, in the form of storm protection and recreation amenities, is at least partly capitalized into property values. These beach values ultimately influence the benefit-cost analysis in support of shoreline stabilization policy, which, in turn, affects the shoreline dynamics. This paper explores the policy implications of this circularity. With a better understanding of the physical-economic feedbacks, policy makers can more effectively design climate change adaptation strategies. (PDF contains 4 pages)
Resumo:
Coastal communities throughout the United States have dealt with the devastating effects of storms for centuries, however today’s threats are greater due to three factors. First, the population along the coastline has grown, and is projected to increase.i Additionally, past land use management decisions in the coastal zone have rarely led to the greatest protection from threats. Finally, climate change is predicted to affect coastal areas by accelerating current sea level rise rates and possibly increasing storm intensity.ii These factors compounded together mean that coastal communities are facing a very dangerous situation that threatens economies and human life. (PDF contains 4 pages)