72 resultados para Climatic Variability of the Mediterranean Paleo-circulation
Resumo:
Principal coordinates analysis and multiple regression analysis were used to determine the environmental factors associated with the decline in phytoplankton production during and after the 1977 drought for the San Francisco Bay-Delta Estuary. Physical, chemical and biological data were collected semimonthly or monthly during the spring-summer between 1973 and 1982 from 15 sampling sites located throughout the Bay-Delta. A decline in phytoplankton community diversity and density during the 1977 drought and subsequent years (1978 through 1981) was described using principal coordinates analysis. The best multiple regression which described the changes in phytoplankton community succession contained the variables water temperature, wind velocity and ortho-phosphate concentration. Together these variables accounted for 61 percent of the variation in the phytoplankton community among years described by principal coordinates analysis. An increase in water temperature, wind velocity and ortho-phosphate concentration within the Bay-Delta, beginning in June 1976 and continuing through 1981, was demonstrated using weighted moving averages. From the strong association between phytoplankton community succession and climatic variables it was hypothesized that the decline in phytoplankton production during and after the 1977 drought was associated with climatic changes within the northeast Pacific.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): A selective but nontheless real record of phytoplankton activity over the Santa Barbara Basin can be obtained from the underlying varved sediments. The phytoplankton groups preserved are: diatoms (frustrules and spores), silicoflagellates, dinoflagellates (cysts) and coccoliths.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Stable isotope data obtained from snow and ice cores retrieved from an altitude of 5340m on Mt. Logan (60°30'N; 140°36'W) indicate that "isotopic seasons" are not generally in phase with calendar seasons. The former are phase lagged with respect to the latter by up to several months and appear to be correlated with SST'S and ocean heat transfer curves and/or the position of the Aleutian low rather than with air temperature or the temperature difference between the ocean surface and the core site.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): An analysis of the principal components of surface temperature and precipitation in the western U.S. is presented. Data consist of monthly mean temperature and total precipitation for 66 climate divisions west of the Continental Divide, for the years 1931-1984. The analysis is repeated for three separate combinations of months - the water year (Oct - Sept), the cool season (Oct - Mar) and the warm season (Apr - Sept). Inspection of monthly precipitation climatology indicates that selection of these combinations of months results in very few awkward splittings of the natural precipitation seasons found in the West.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): The recent changes in phytoplankton production and community composition within the Suisun Bay and Sacramento-San Joaquin Delta may be related to climate. Chlorophyll a concentration, decreased by 42% (spring-summer) and 29% (fall) between 1972 through 1976 and 1977 through 1981. The decrease in biomass was characterized by a shift in phytoplankton community dominance from Skeletonema spp., Cyclotella spp. and Coscinodiscus spp. to Melosira granulata. The possible influence of climate on phytoplankton abundance was suggested by multivariate statistical analyses that demonstrated an association between changes in phytoplankton community composition and abundance between 1975 and 1982 and the climate related variables wind velocity, precipitation, river flow and water temperature.
Resumo:
We have applied a number of objective statistical techniques to define homogeneous climatic regions for the Pacific Ocean, using COADS (Woodruff et al 1987) monthly sea surface temperature (SST) for 1950-1989 as the key variable. The basic data comprised all global 4°x4° latitude/longitude boxes with enough data available to yield reliable long-term means of monthly mean SST. An R-mode principal components analysis of these data, following a technique first used by Stidd (1967), yields information about harmonics of the annual cycles of SST. We used the spatial coefficients (one for each 4-degree box and eigenvector) as input to a K-means cluster analysis to classify the gridbox SST data into 34 global regions, in which 20 comprise the Pacific and Indian oceans. Seasonal time series were then produced for each of these regions. For comparison purposes, the variance spectrum of each regional anomaly time series was calculated. Most of the significant spectral peaks occur near the biennial (2.1-2.2 years) and ENSO (~3-6 years) time scales in the tropical regions. Decadal scale fluctuations are important in the mid-latitude ocean regions.
Resumo:
A survey of the larval and juvenile fishes associated with the pelagic Sargassum habitat in the South Atlantic Bight and adjacent western Atlantic Ocean was conducted from July 1991 through March 1993. Fishes representing 104 taxonomic categories were identified, including reef fishes, coastal demersal, coastal pelagic, epipelagic and mesopelagic species. The most important families were Balistidae and Carangidae, each represented by 15 species. Species composition, species diversity and abundance varied both seasonally and regionally. Diversity was highest during spring through fall over the outer continental shelf and in the Gulf Stream. Abundance decreased from spring through winter and from the continental shelf into offshore waters. The numbers of fishes and fish biomass were found to be positively correlated with the wet weight of algae in most cases examined. The results of this study will be useful to fisheries managers assessing the potential impacts of commercial Sargassum harvesting in the region.
Resumo:
Coastal and marine ecosystems support diverse and important fisheries throughout the nation’s waters, hold vast storehouses of biological diversity, and provide unparalleled recreational opportunities. Some 53% of the total U.S. population live on the 17% of land in the coastal zone, and these areas become more crowded every year. Demands on coastal and marine resources are rapidly increasing, and as coastal areas become more developed, the vulnerability of human settlements to hurricanes, storm surges, and flooding events also increases. Coastal and marine environments are intrinsically linked to climate in many ways. The ocean is an important distributor of the planet’s heat, and this distribution could be strongly influenced by changes in global climate over the 21st century. Sea-level rise is projected to accelerate during the 21st century, with dramatic impacts in low-lying regions where subsidence and erosion problems already exist. Many other impacts of climate change on the oceans are difficult to project, such as the effects on ocean temperatures and precipitation patterns, although the potential consequences of various changes can be assessed to a degree. In other instances, research is demonstrating that global changes may already be significantly impacting marine ecosystems, such as the impact of increasing nitrogen on coastal waters and the direct effect of increasing carbon dioxide on coral reefs. Coastal erosion is already a widespread problem in much of the country and has significant impacts on undeveloped shorelines as well as on coastal development and infrastructure. Along the Pacific Coast, cycles of beach and cliff erosion have been linked to El Niño events that elevate average sea levels over the short term and alter storm tracks that affect erosion and wave damage along the coastline. These impacts will be exacerbated by long-term sea-level rise. Atlantic and Gulf coastlines are especially vulnerable to long-term sea-level rise as well as any increase in the frequency of storm surges or hurricanes. Most erosion events here are the result of storms and extreme events, and the slope of these areas is so gentle that a small rise in sea level produces a large inland shift of the shoreline. When buildings, roads and seawalls block this natural migration, the beaches and shorelines erode, threatening property and infrastructure as well as coastal ecosystems.
Resumo:
General Circulation Models (GCMs) may be useful in estimating the ecological impacts of global climatic change. We analyzed seasonal weather patterns over the conterminous United States and determined that regional patterns of rainfall seasonality appear to control the distributions of the Nation's major biomes. These regional patterns were compared to the output from three GCMs for validation. The models appear to simulate the appropriate seasonal climates in the northern tier of states. However, the spatial extent of these regions is distorted. None of the models accurately portrayed rainfall seasonalities in the southern tier of states, where biomes are primarily influenced by the Bermuda High.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): A high resolution, AMS carbon-14-dated sediment record from the Sulu Sea clearly indicates the Younger Dryas climatic event affected the western equatorial Pacific. Presence of the Younger Dryas in the tropical western Pacific indicates this climatic event is not restricted to the North Atlantic nor to high latitudes, but is global in extent.
Resumo:
Sediments deposited in late Pleistocene Lake Estancia, central New Mexico, contain a paleoclimatic record that includes the last glacial maximum and deglacial episode. Stratigraphic reconstruction of an interval representing the highstand of the lake that occurred during the last glacial maximum reveals ~2000-, ~600-, and ~200-year oscillations in lake level and climate. Shifting position of the polar jetstream in response to expansion and contraction of the North American ice sheet may be partly responsible for the millenial-scale changes in Lake Estancia but probably does not explain the centennial-scale oscillations.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): We examined atmospheric circulation conditions conducive to occurrence of winter floods that exceed the 10-year peak discharge on rivers in six hydroclimatic subregions in Arizona, southern Utah, Nevada, and California. ... This relationship between flooding and broad-scale atmospheric patterns in the modern record will aid in paleoclimatic interpretations of paleoflood records over the last few thousand years.
Resumo:
H.J. Andrews Experimental Forest is a 6400 ha forest of Douglas fir, western hemlock, and Pacific silver fir located in, and typical of, the central portion of the western slope of the Cascade mountain range of Oregon. The forest is one of 19 sites in the Long-Term Ecological Research (LTER) program sponsored by the National Science Foundation. ... Because of the scientific significance of Andrews Forest, it is important to investigate the temporal variability of annual and seasonal temperature and precipitation values at the site and identify past times of anomalous climatic conditions. It is also important to establish quantitatively the relationships between the climate of Andrews Forest and that of its surrounding area and, hence, place the climate of Andrews Forest into its regional context.